



# Flow reconstruction of single-phase planar jet from sparse temperature measurements

Xicheng Wang, Yimeng Chen, KinWing Wong, Dmitry Grischenko, Pavel Kudinov

Division of Nuclear Engineering Royal Institute of Technology (KTH), Sweden

November 13-15, 2023, KFUPM, Saudi Arabia



- Introduction
- Methodology
- Test on benchmark dataset
- Test on experimental measurements
- Conclusion



#### **Steam injection into Pressure Suppression Pool**

#### Safety concerns of thermal stratification Higher containment pressure than in mixed pool conditions. Lower NPSH at Emergency Core Cooling • Systems (ECCS) and spray pumps **Risk for cavitation** Pumps are shut down at $T_L \approx 95^{\circ}\text{C}$ $T_1 \gg T_2$ $T_2$ Buoyancy Momentum Momentum **Thermal stratification** Mixing Buoyancy >> Momentum Momentum $\gg$ Buoyancy



Nordic BWR containment (ASEA-ATOM)



#### Challenge for measurement of condensed steam jet



Sparger experiment in the PPOOLEX facility. SPA-T6, low steam injection phase



PIV measurement of turbulent velocity induced by steam condensation in PANDA experiments

- Model development requires data from
  - Large scale pool tests
  - Small scale separate effect tests

#### Velocity measurement

- Provide database for code development and validation.
- Reproduction of velocity is essential for simulating energy transportation
  - To capture the key phenomena of the pool
    - i.e. thermal stratification or mixing

#### PIV is challenging

- rapid collapse of bubbles
- significant temperature gradient

#### • PIV is infeasible

- Non-transparent fluid, e.g. liquid metal



Comparison of centreline velocity profiles between PIV and CFD scoping analysis

# Velocity reconstruction by sparse temperature measurement





TC grid near the sparger in PPOOLEX test



- Investigate the capability of flow velocity reconstruction from sparse temperature measurement. Specifically, propose a farmwork that can map:
  - Input: sparsely measured temperature, other info if necessary
  - Output: full space velocity, temperature

#### Database (generated by CFD)

- Benchmark case
- Engineering application



Temperature measured by TC grid in PPOOLEX. Contours were interpolated via sparse data



- Introduction
- Methodology
- Test on benchmark dataset
- Test on experimental measurements
- Conclusion



### Training data (benchmark case)

#### **Training data**

- Generated by ANSYS Fluent
  - steady-state case
  - 2D planar jet
  - K-omega RANS
- 3740 cases, varying on
  - $U_0: 0.1 \sim 10 \text{ m/s}$ ,  $T_0: 20 \sim 80 \text{ °C}$
  - $I_0: 5\% \sim 70\%$ ,  $\mu_l/\mu_t: 10 \sim 5000$
  - $I_{eff}$ : 10%~300%,  $U_0$ : 1~6 m/s
    - Additional turbulence source
- With special focus on capturing
  - diffusion of the momentum and energy under diverse boundary conditions.



Contours of velocity (top) and temperature (bottom) obtained by CFD simulations



#### **Proposed data-driven framework**

• (FDD1) 
$$UF = d_U \circ \mathcal{F}_{NN2} \circ \mathcal{F}_{NN1} \circ TS$$

- $d_{U(T)}$  &  $e_{U(T)}$ 
  - decoder and encoder to reduce dimensions
  - by Proper Orthogonal Decomposition (POD)
- $\mathcal{F}_{NN}$ 
  - Fully-connected Neural Network (FCNN)
- $TF = T_U \circ \mathcal{F}_{NN1} \circ TS$
- (FDD2)  $UF = d_{U} \circ \mathcal{F}_{NN3} \circ TS$



Sparse space Latent space Full space  $TS[:, i] \in \mathbb{R}^{s}$   $TL[:, i] \in \mathbb{R}^{r_{1}}$   $TF[:, i] \in \mathbb{R}^{n}$ 



Data-driven framework



- The matrix for a variable in full field space is  $f_{n \times m}$ 
  - n: dimensions of a single snapshot
  - m: number of cases
- By conducting SVD
  - $f_{n \times m} = u_{n \times n} \sum_{n \times m} v_{m \times m}^T$

- *f* can be approximated by the matrices with lower dimensions (*r* ≪ *n*)
  - $f_{n \times m} \approx u_{n \times r}^* \sum_{r \times r}^* v_{r \times m}^{T*}$
  - $u_{n \times r}^* \sum_{r \times r}^*$  spatial components (modes)
  - $v_{r \times m}^{T*}$  are coefficients in latent space to be predicted by FNN with sparse temperature





## **Dimension reduction by POD**

- 99.9% variability of T and U fields can be described by 10 and 5 modes, respectively
- Modes from both fields behave similar
  - Mode 1: convection-dominant
  - Mode 2: diffusion-dominant.





#### Effect of sensor placement and frameworks

- Optimized sensor placements (7~8 sensors) yields similar performance as a TC grid with 40 sensors.
- Reconstruction of full T (TS2TF) is much better than U (TS2UF) and the two frameworks doesn't show significant difference.
- Major error arises from low velocity cases







NMSE compared within different frameworks and sensor arrangements



NMSE distribution over inlet velocity

## Introduction of velocity sensor

- Accuracy of velocity reconstruction (TS2UF) was significantly improved by
  - Introduce velocity sensors either at the inlet / downstream
- Latent space coefficients are well represented











Comparison of latent space coefficient for 1<sup>st</sup> (left) and 2<sup>nd</sup> (right) modes between reference and FNN predication

12

## Sparse temperature to full velocity (TS2UF)

 Velocity profiles under diverse turbulence boundary conditions were well captured by sparse temperature (40 T sensors + 1 U sensor)



Examples of contours of streamwise velocity predicted in testing dataset.



- Introduction
- Methodology
- Test on benchmark dataset
- Test on experimental measurements
- Conclusion & outlook

## Steam injection through a multi-hole sparger



**Training data** 

TENSKA





#### Steam injection through a multi-hole sparger





#### **Physics-informed neural network (PINN)**

- FPINN
  - Data-driven + PINN
  - $UF = \mathcal{F}_{PINN} \circ d_T \circ \mathcal{F}_{NN1} \circ TS$ 
    - $\mathcal{F}_{\textit{PINN}}$  encodes physics equations into the residual network.
      - Optimize a network (solution)
      - Satisfy both PDEs and available data (e.g. full temperature)





#### **PINN prediction**





- Feasibility and capability to reconstruct flow velocity from sparse temperature measurements were investigated.
  - Two types of frameworks are proposed and tested
    - Pure data-driven
    - Data-driven + PINN
  - Temperature measurements as the only inputs are insufficient and velocity information is necessary
  - Implementation of pure data-driven method in measured data yields promising results.



Xicheng Wang xicheng@kth.se

# **THANK YOU**