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Code and data availability: SparseT2V:https://github.com/xichenggege/SparseT2V

 

https://github.com/xichenggege/SparseT2V.git
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Steam injection into Pressure Suppression Pool

Safety concerns of thermal stratification 

• Higher containment pressure than in mixed pool 

conditions.

• Lower NPSH at Emergency Core Cooling 

Systems (ECCS) and spray pumps

• Risk for cavitation

• Pumps are shut down at  𝑇𝐿 ≈ 95oC

Thermal stratification

Buoyancy ≫ Momentum

Mixing

Momentum ≫ Buoyancy

Nordic BWR containment (ASEA-ATOM)
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Challenge for measurement of condensed steam jet 

Sparger experiment in the PPOOLEX facility.

SPA-T6, low steam injection phase 

• Model development requires data from
– Large scale pool tests

– Small scale separate effect tests

• Velocity measurement
– Provide database for code development and 

validation. 

– Reproduction of velocity is essential for 
simulating energy transportation

• To capture the key phenomena of the pool
– i.e. thermal stratification or mixing

• PIV is challenging 
– rapid collapse of bubbles 

– significant temperature gradient 

• PIV is infeasible 
– Non-transparent fluid, e.g. liquid metal 

PIV measurement of turbulent velocity induced by 

steam condensation in PANDA experiments

Comparison of centreline velocity profiles 

between PIV and CFD scoping analysis 

ሶ𝐺𝑠 = 70 𝑘 Τ𝑔 𝑚2 𝑠 ሶ𝐺𝑠 = 162 𝑘 Τ𝑔 𝑚2 𝑠

?
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Velocity reconstruction by sparse temperature 

measurement

Sparse temperature 

field

Full velocity field

?

TC grid near the sparger in PPOOLEX test

Temperature measured by TC grid in PPOOLEX.

Contours were interpolated via sparse data
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Goal and motivation
• Investigate the capability of flow velocity reconstruction 

from sparse temperature measurement. Specifically, 
propose a farmwork that can map: 

– Input: sparsely measured temperature, other info if necessary

– Output: full space velocity, temperature

Database (generated by CFD)
• Benchmark case

• Engineering application
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Training data
• Generated by ANSYS Fluent 

– steady-state case

– 2D planar jet

– K-omega RANS

• 3740 cases, varying on
– 𝑈0: 0.1~10 Τ𝑚 𝑠 , 𝑇0: 20~80 ℃
– 𝐼0: 5%~70%, Τ𝜇𝑙 𝜇𝑡:  10~5000

– 𝐼𝑒𝑓𝑓: 10%~300%, 𝑈0: 1~6 Τ𝑚 𝑠
• Additional turbulence source

• With special focus on capturing 
– diffusion of the momentum and energy 

under diverse boundary conditions.

Training data (benchmark case)

Contours of velocity (top) and temperature 

(bottom) obtained by CFD simulations
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Proposed data-driven framework 

Schematic of FNN

Sparse space

𝑻𝑺[: , 𝒊] ∈ ℝ𝒔
Latent space

𝑻𝑳[: , 𝒊] ∈ ℝ𝒓𝟏

Full space

𝑻𝑭[: , 𝒊] ∈ ℝ𝒏

𝑼𝑳[: , 𝒊] ∈ ℝ𝒓𝟐 𝑼𝑭[: , 𝒊] ∈ ℝ𝒏

ℱ𝑵𝑵𝟏

𝒆𝑻

ℱ𝑵𝑵𝟐

𝒅𝑻

𝒆𝑼

𝒅𝑼

• (FDD1) 𝑼𝑭 = 𝒅𝑼 ∘ 𝓕𝑵𝑵𝟐 ∘ 𝓕𝑵𝑵𝟏 ∘ 𝑻𝑺
– 𝑑𝑈(𝑇) & 𝑒𝑈(𝑇)

• decoder and encoder to reduce 
dimensions 

• by Proper Orthogonal Decomposition 
(POD)

– ℱ𝑁𝑁 
• Fully-connected Neural Network (FCNN)

• 𝑻𝑭 = 𝑻𝑼 ∘ 𝓕𝑵𝑵𝟏 ∘ 𝑻𝑺

• (FDD2) 𝑼𝑭 = 𝒅𝑼 ∘ 𝓕𝑵𝑵𝟑 ∘ 𝑻𝑺

Data-driven framework

ℱ𝑵𝑵𝟑
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Dimension reduction by POD

• 𝑓 can be approximated by the 
matrices with lower dimensions 
(𝑟 ≪ 𝑛)

- 𝑓𝑛×𝑚 ≈ 𝑢𝑛×𝑟
∗ ∑𝑟×𝑟

∗ 𝑣𝑟×𝑚
𝑇∗

- 𝑢𝑛×𝑟
∗ ∑𝑟×𝑟

∗ spatial components 

(modes)

- 𝑣𝑟×𝑚
𝑇∗  are coefficients in latent space 

to be predicted by FNN with sparse 

temperature

• The matrix for a variable 

in full field space is 𝑓𝑛×𝑚

– 𝑛: dimensions of a single 

snapshot

– 𝑚: number of cases 

• By conducting SVD

– 𝑓𝑛×𝑚 = 𝑢𝑛×𝑛∑𝑛×𝑚𝑣𝑚×𝑚
𝑇
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• 99.9% variability of T and U fields can be 

described by 10 and 5 modes, respectively

• Modes from both fields behave similar
• Mode 1: convection-dominant

• Mode 2: diffusion-dominant.

Dimension reduction by POD

Reconstructed variance as a function of 

the number of modes
First and second POD modes of temperature (top) and 

streamwise velocity (bottom) the turbulent planar jet. 

𝑇

𝑈
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• Optimized sensor placements (7~8
sensors) yields similar performance as a
TC grid with 40 sensors.

• Reconstruction of full T (TS2TF) is much
better than U (TS2UF) and the two
frameworks doesn’t show significant
difference.

• Major error arises from low velocity
cases

Effect of sensor placement and frameworks

Temperature sensors determined by (a) optimal sensor placement on T field 

(case1 in red) and U field (case2 in white), and (b) similar arrangement as PPOOLEX 

experiments (case3). Visualized are the temperature profiles.

(a) (b)

NMSE compared within different frameworks 

and sensor arrangements

NMSE distribution over inlet velocity
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Introduction of velocity sensor

Sensor arrangement. T sensors in red and U sensors in white

NMSE when introducing velocity sensor

Comparison of latent space coefficient for 1st (left) and 2nd (right) modes between reference and FNN predication

• Accuracy of velocity reconstruction (TS2UF) was

significantly improved by
– Introduce velocity sensors either at the inlet / downstream

• Latent space coefficients are well represented
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• Velocity profiles under diverse turbulence boundary conditions were well

captured by sparse temperature (40 T sensors + 1 U sensor)

Sparse temperature to full velocity (TS2UF) 

Examples of contours of streamwise velocity predicted in 

testing dataset. 

pred U 𝑟𝑒𝑓 − 𝑝𝑟𝑒𝑑

pred U 𝑟𝑒𝑓 − 𝑝𝑟𝑒𝑑

pred U 𝑟𝑒𝑓 − 𝑝𝑟𝑒𝑑
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Steam injection through a multi-hole sparger

Training data

Test grid as input
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Steam injection through a multi-hole sparger

Testing on TC grid
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• FPINN
– Data-driven + PINN

– 𝑼𝑭 = 𝓕𝑷𝑰𝑵𝑵 ∘ 𝒅𝑻 ∘ 𝓕𝑵𝑵𝟏 ∘ 𝑻𝑺
• ℱ𝑃𝐼𝑁𝑁 encodes physics equations into the residual 

network.
– Optimize a network (solution) 

– Satisfy both PDEs and available data (e.g. full temperature) 

Physics-informed neural network (PINN)

Fully-connected neural network Residual network
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PINN prediction
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• Feasibility and capability to reconstruct flow 
velocity from sparse temperature 
measurements were investigated.

– Two types of frameworks are proposed and tested 
• Pure data-driven

• Data-driven + PINN

– Temperature measurements as the only inputs are 
insufficient and velocity information is necessary

– Implementation of pure data-driven method in 
measured data yields promising results.

Conclusion
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THANK YOU

Xicheng Wang

xicheng@kth.se

mailto:xicheng@kth.se
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