

Phenazine Porous polymers for Radioactive Iodine Capture

Hassan A. Amasha^a, Nagendra Kulal^e, Munzir H. Sulaiman^c, Tariq A. Al-Abdullah^d, Othman Charles S. Al Hamouz^{a,e*}.

^a Chemistry Department King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

^b Physics Department, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

^c Interdisciplinary Research Center for Hydrogen and Energy storage, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

^d Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

^e Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.

Corresponding author: othmanc@kfupm.edu.sa

Nuclear Energy as a source of energy

Radioactive iodine release in nuclear plants and their Effect

Emission of Gaseous radionacieotides released in the on-gas stream.

Huve, J., et al; (2018). RSC Advances 8(51): 29248-29273.

11/15/2023 • Kurisingal, J. F., et al; (2023). Journal of Hazardous Materials 458: 131835.

Porous materials for radioactive iodine capture

- Pan, X., et al; (2020). Microporous and Mesoporous Materials 300: 110161.
- Xie, W., et al; (2019). <u>Materials Horizons 6(8): 1571-1595.</u>
- Huve, J., et al; (2018). <u>RSC Advances 8(51): 29248-29273.</u>

Phenazine-based porous polymers

Design and Synthesis:

• O. C. S. Al Hamouz, et al (2022). Journal of Industrial and Engineering Chemistry 113: 215-225.

Characterization

- (a) Solid ¹³C-NMR-CPMAS spectra of the synthesized polymers **PHP**, **PHT** and **PHF**.
- (b) FT-IR spectra of the synthesized polymers **PHP**, **PHT** and **PHF**.
- (c) TGA thermograms of the synthesized polymers **PHP**, **PHT** and **PHF**.
- (d) PXRD patterns of the synthesized polymers **PHP**, **PHT** and **PHF**.

Surface Area and Porosity:

N₂ adsorption/desorption isotherm, and NLDFT pore size distribution curve of the synthesized polymers **PHP**, **PHT** and **PHF.** 11/15/2023

Surface area:

- PHP: 380 m²/g.
- PHF: 280 m²/g.
- PHT: 170 m²/g.

Adsorption of Iodine Vapor

10

Time (h^{0.5})

Adsorption of Kinetics:

Pseudo first-order kinetic model parameters of the adsorption of volatile						
iodine by the porous polymers PHP, PHF and PHT.						

Madal	Polymer	Constants			
woder		q _{e(exp)}	q _{e(calc.)}	k	R ²
Pseudo first- order	PHP	885.0	974.0	0.6330	0.9957
	PHT	1005	1034	0.6880	0.9991
	PHF	925.0	924.0	0.7360	0.9880

pseudo second-order kinetic model parameters of the adsorption of volatile iodine by the porous polymers PHP, PHF and PHT. Constants Model Polymer R² **q**_{e(calc.)} k q_{e(exp)} PHP 5.930×10⁻⁵ 885.0 2500 0.7659 **Pseudo** PHT 1005 1667 2.390×10⁻⁴ 0.9736

1250

925.0

second-order

PHF

エエ/エン/ としと

11

0.9375

4.920×10⁻⁴

Regeneration of Phenazine based polymers

Adsorption of Iodine dissolved in cyclohexane

Adsorption of iodine from cyclohexane solution:

PHP

PHP

PHT

PHT

PHT

PHF

PHF

PHF

Blank

Blan

Adsorption Isotherm Models:

Langmuir isotherm model parameters for the adsorption of iodine in cyclohexane by PHP, PHT and PHF porous polymers.						
Model	Polymor		Co	onstants		
MODEI	Polymer	q _{e(exp)}	q _{m(calc.)}	b	R ²	
Langmuir	PHP	202.0	208.3	0.0120	0.9926	
	PHT	222.0	256.4	0.0300	0.8755	
	PHF	207.0	208.3	0.0940	0.9778	

Freundlich isotherm model parameters for the adsorption of iodine in cyclohexane by PHP, PHT and PHF porous polymers.						
Model	Polymer	Constants				
		n	k _f		R ²	
	PHP	4.595	65.16		0.9957	
Freundlich	PHT	2.379	27.01		0.9613	
	PHF	4.024	56.14		0.9815	

Heterogeneous Adsorption

Adsorption Kinetics:

11/15/2023

Kinetic Models:

Pseudo first-order kinetic model parameters of the adsorption of iodine in cyclohexane by the porous polymers PHP, PHF and PHT.

Medel		Constants				
woder	Polymer	q _{e(exp)}	q _{e(calc.)}	k	R ²	
Pseudo first- order	PHP	201.9	104.9	0.2135	0.8263	
	PHT	222.7	91.73	0.2765	0.8143	
	PHF	207.3	134.3	0.2126	0.9883	

Pseudo second-order kinetic model parameters of the adsorption of iodine in cyclohexane by the porous polymers PHP, PHF and PHT.

Madal	Dolymor	Constants				
widdei	Polymer	q _{e(exp)}	q _{e(calc.)}	k	R ²	
Decude cocord	PHP	201.9	158.7	0.0284	0.990	
Pseudo second- order	PHT	222.7	192.3	0.0338	0.9996	
	PHF	207.3	158.7	0.0153	0.9905	

CHEMISORPTION

Conclusions

- Three novel porous polymers PHP, PHT and PHF were synthesized by microwave assisted Friedel crafts alkylation.
- The structure of the synthesized polymers was confirmed by solid state 13C-NMR CP MAS, FT-IR and their thermal stability was investigated by TGA.
- The polymers were amorphous in nature and permanently porous with surface areas 137-330 m²/g.
- The porous polymers showed their capability to adsorb iodine in gas phase and solution phase which shows their efficacy in the removal of iodine.
- The efficacy of the polymers was investigated by pseudo first-order and second-order kinetic models and showed that the adsorption in the gas phase to be controlled by physisorption whereas, in the solution phase to be controlled by chemisorption.
- These conclusions show that incorporating porosity and functionality enables the porous polymers to work efficiently
 under different environments. Also, it provides sufficient potential for the use of these porous polymers as an adsorbent for
 the removal of radioactive iodine release from nuclear reactors.

2

3

5

6