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Abstract - In the complex field of nuclear reactor design and analysis, there is a continuous 
need for sophisticated computational models that can accurately capture the diverse and 

challenging thermal hydraulic phenomena during steady state and transient conditions. 

This research sets the stage for the development of a comprehensive system analysis code 
for nuclear reactor thermal hydraulic design, starting with a fully implicit isentropic two-

fluid model with four governing equations. The computational methodology for this model 

incorporated the Advection Upstream Splitting Method (AUSM) scheme with a staggered 
grid arrangement. The nonlinear system of governing equations was solved implicitly by 

employing Newton’s method while a numerical Jacobian matrix was calculated for the 

derivative terms, enhancing the stability and efficiency of the solution process. The 

performance of the model was assessed using three classical two-phase benchmark 
problems: water faucet problem, oscillating manometer problem, and air-water phase 

separation problem. The validation results indicate a reliable and accurate prediction of 

the model. Consequently, the successful development and validation of current two-fluid 
isentropic model provides a solid foundation for the future development of a comprehensive 

nuclear system analysis code based on the two-fluid model. 
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I. Introduction 
 

      Nuclear reactors are complex engineering systems 
that require accurate understanding and prediction of 

neutronics and thermal hydraulics phenomena, which 

has a wide spectrum of interacting scales from 

microscopic to macroscopic. One of the crucial 
phenomena that occurs within these systems is two-

phase flow, where two distinct phases, typically water 

and steam, coexist and interact dynamically. The 
accurate representation and prediction of such 

interactions is critical to the safety analyses of nuclear 

reactors.  
     Nuclear reactor system analysis codes such as 

RELAP5[1], TRAC [2], MARS[3], and  SPACE[4], 

have been developed to capture the essential dynamics 

of two-phase flow in nuclear reactors. By using a one-
dimensional two-phase two-fluid approach, they have 

achieved great success in supporting various nuclear 

applications, from safety evaluations of existing 

reactors to the design and licensing processes of new 
reactors. Their historical success illustrates the need 

and significance of comprehensive nuclear system 

analysis tools. 

As the nuclear industry advances, there is a 
growing demand for more sophisticated numerical 

tools and methods to improve accuracy and 

computational efficiency. Furthermore, unavailability 
of source codes of all system analysis tools that are 

based on two-fluid approach adds significant 

limitations to users. This not only prevents the users 
from knowing the exact mechanism of the program but 

also reduces its flexibility, preventing the user from 

creating more customized models. As a result, the main 

objective of this paper is to set the stage for the 
development of a comprehensive nuclear system 

analysis tool, starting with a fully implicit isentropic 

two-fluid model with four governing equations. 
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II. One-Dimentional Two-Phase Two-Fluid Model 
 

     The two-fluid, single-pressure, two-phase flow 

equations used in this study are similar to those found 

in the existing nuclear system analysis codes such as 

RELAP5, TRAC, TRACE, MARS, and SPACE. As an 

initial approach, the attention is focused on the 

isentropic two-phase two-fluid model, where the 

system of six equations is condensed to a set of four 

equations, as presented below: 

 

              
∂(𝛼𝑔𝜌𝑔)

∂t
 +  

∂(𝛼𝑔𝜌𝑔𝑢𝑔)

∂x
 =  0                        (1)                                                 

                
∂(𝛼𝑙𝜌𝑙)

∂t
 +  

∂(𝛼𝑙𝜌𝑙𝑢𝑙)

∂x
 =  0                          (2)   

                                                               

 

 

 

 

where the subscripts "l" and "g" correspond to the 

liquid and gas phases, respectively. For phase k, the 

terms in the equations above are defined as: 

ρk - density of phase k, 

p -  pressure, 

uk - velocity of phase k, 

αk - volume fraction of phase k, 

Cf - interfacial drag coefficient, 

g - gravitational constant 

      The first term in the mass conservation equations 

(1&2) refers to the mass rate of change of the control 

volume, while the second term refers to the flow of 

mass across the boundary of the control volume. For 

the momentum equations (3&4), the terms in the left-

hand side represents the rate of change of the 

momentum of each phase and the change of the 

momentum and pressure across the boundaries of the 

control volume. In the right-hand side of Eq. (3) and 

(4), the first term represents momentum transfer due to 

the difference between average and interfacial 

pressure, the second term represents gravitational 

force and the third term represents the drag force per 

unit volume on the interfaces separating the two phases 

[5]. 

      The variables derived from this set of equations 

include p, α, ul, and ug. These represent the pressure, 

void fraction (or the volume fraction of the gas phase), 

velocity of the liquid phase, and velocity of the gas 

phase, respectively. In order to obtain a closed system 

of governing equations, fluid properties are needed. 

o Closure Equations: 

      The isentropic perfect gas and Tait’s equations of 

state (EOS) serve as closure equations for the gas and 

liquid phases respectively [6]. Tait’s EOS 

characterizes a liquid as compressible and barotropic, 

incorporating only pressure and density variables. 

Thus, when a liquid is modeled by this EOS, the 

energy equation is decoupled from the mass and 

momentum equations [7]. 

 Isentropic perfect gas EOS for the gas phase is 

expressed as: 

 

                        𝑝 = 𝑝(𝜌𝑔) = 𝑝𝑔,0 (
𝜌𝑔

𝜌𝑔,0
)

𝛾

                          (5) 

 

where  p0
g = 105 Pa, γ = 1.4 and ρ0

g = 1 kg/m3 . 

 

Tait’s EOS for the liquid phase, which is equivalent to 

linear secant-modulus equation [8], is given as: 

                    𝑝 = 𝑝(𝜌𝑙) = 𝑝𝑙,0 [(
𝜌𝑙

𝜌𝑙,0

)

𝑛

− 1]                      (6)  

 

where   

              p0
l = 3.3 × 108 Pa,  n = 7.15,  ρ0

l = 1000 kg/m3 .  
 
 

 The void fraction satisfies the following equation: 

                                       𝛼𝑔 + 𝛼𝑙 = 1                                  (7) 
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III. Numerical and Solution Method 
  

       In this section, numerical method applied to the 

two-fluid model, as introduced in the first part of the 

paper, is discussed. The code was developed from 
scratch by the author, and a flowchart of the code is 

provided in Fig. 2. 

      The discretized equations were derived using a 
finite volume method on a staggered grid approach in 

order to avoid the commonly observed oscillations on 

pressure when collocated grids are used [9]. In this 
configuration, scalar quantities such as pressure, 

densities, and void fraction were assigned to cell 

centers, while velocities, as vector quantities, are 

defined at the cell boundaries. The spatial 
configuration is clearly shown in Fig. 1.  The code is 

developed using a fully implicit scheme, ensuring 

unconditional stability in the numerical solution. This 
allows for stable numerical solution even with large 

time-steps, meaning the time-step is not constrained by 

the Courant limit (CFL). 

 

Fig. 1. Staggered grids 

 

      Using this as a foundation, the discretized 

equations were formulated in residual form. It should 
be noted that in the following equations, the 

superscripts "n" and "n + 1" differentiate between time 

steps, while subscripts marked with "i" and “I” indicate 
spatial positioning of scalar and vector control 

volumes, respectively. 

 
      The discretized governing equations can be 

expressed in the following vector form: 

 
                                             𝑹(𝒘) = 0                                     (8)  
 

where R is the residual vector of the system. 

 

 

Fig. 2. Flow chart of the two fluid code with an implicit 

time integration method. 

 

The residuals of the fully implicit discretized mass 

conservation equations for the two phases are as follows. 
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𝑅1,𝑖 = (𝛼𝑔𝜌𝑔)
𝑖

𝑛+1
− (𝛼𝑔𝜌𝑔)

𝑖

𝑛

+
∆𝑡

∆𝑥
[(𝑓𝑔)

𝑖+
1
2

𝑛+1
− (𝑓𝑔)

𝑖−
1
2

𝑛+1
]               (9) 

 

𝑅2,𝑖 = (𝛼𝑙𝜌𝑙)𝑖
𝑛+1 − (𝛼𝑙𝜌𝑙)𝑖

𝑛

+
∆𝑡

∆𝑥
[(𝑓𝑙)

𝑖+
1
2

𝑛+1 − (𝑓𝑙)
𝑖−

1
2

𝑛+1]              (10) 

 

where  (𝑓𝑘)𝑖+1/2 = ((𝛼𝑘𝜌𝑘) ̇ 𝑢𝑘)
𝑖+1/2

 is the mass flux 

of the kth phase at i + 1/2 location.  

The residuals of the fully implicit discretized 

momentum equations are as follows. 

 

𝑅3,𝐼 = (𝛼�̃�𝜌�̃�𝑢𝑔)
𝐼

𝑛+1
− (𝛼�̃�𝜌�̃�𝑢𝑔)

𝐼

𝑛

+
∆𝑡

∆𝑥
[(𝑓𝑔)

𝐼+
1
2

𝑛+1
− (𝑓𝑔)

𝐼−
1
2

𝑛+1
]

− (�̃�𝑖𝑛𝑡)𝐼
𝑛+1

[(𝛼𝑔)
𝑖+1

𝑛+1
− (𝛼𝑔)

𝑖

𝑛+1
]

∆𝑥

− (𝛼�̃�𝜌�̃�𝑔)
𝐼

𝑛+1
                                   (11)  

 

𝑅4,𝐼 = (𝛼�̃�𝜌�̃�𝑢𝑙)𝐼
𝑛+1 − (𝛼�̃�𝜌�̃�𝑢𝑙)𝐼

𝑛

+
∆𝑡

∆𝑥
[(𝑓𝑙)

𝐼+
1
2

𝑛+1 − (𝑓𝑙)
𝐼−

1
2

𝑛+1]

− (�̃�𝑖𝑛𝑡)𝐼
𝑛+1

[(𝛼𝑙)𝑖+1
𝑛+1 − (𝛼𝑙)𝑖

𝑛+1]

∆𝑥
− (𝛼�̃�𝜌�̃�𝑔)𝐼

𝑛+1                                (12) 

 

Where (𝑓𝑘)𝐼+1/2 = (𝛼𝑘𝜌𝑘�̇�𝑘
2 + 𝛼𝑘𝑝)

𝐼+1/2
 is the 

momentum flux of the kth phase at I+1/2 location.  

     Scalar properties such as pressure, density, and void 

fraction are defined at cell centers. To calculate 

numerical fluxes, values for these properties are 

required at cell interfaces. These are represented as 

variables with a "dot" in fluxes of equations (9) & (10). 

In RELAP5 nomenclature, these quantities are referred 

to as 'donored' quantities. The same principle applies 

to momentum numerical fluxes in equations (11) and 

(12), where velocities need to be available at cell 

centers. The order of accuracy for our discretization 

depends on the method used to calculate these donored 

quantities in numerical fluxes. 

      The system of equations (9)-(12) contains four 

primitive variables: P, ul, ug, αg; which are solved by 

applying the Newton-Raphson method, as follows. 

                    (
∂𝑹

∂𝐰
)

𝑚

∆𝒘𝑚  =  𝑹(𝒘𝒎)                    (13)                                                 

       By solving Eq. (13), one can obtain the increment 

∆w at the mth iteration. In turn, the variable vector w at 

the (m + 1)th iteration is given by Eq. (14). 

                       𝒘𝒎+𝟏  = 𝒘𝒎 + ∆𝒘𝑚                           (14)                 

where wm+1 is the solution of Eq. (8) when the l2-norm 

of ∆wm satisfies the following criteria: 

                               ‖𝒘𝒎‖ < 𝜺                                 (15)                 

where ε is the tolerance, ε = 10−4. 

 

     The numerical Jacobian calculation, which will be 

used for the derivative term in Eq. (13), can be 

calculated as follows [10]. 

 

                  (
∂𝑹

∂𝐰
)

𝑚

 =  
𝑹(𝒘𝒎+𝜺𝒆)−𝑹(𝒘𝒎)

𝜺
                  (16)           

 

IV. Test Results 

 

IV. A. Ransom’s water faucet problem 
 

     The two-phase water faucet problem, initially 

proposed by Ransom [11], stands as an excellent 
benchmark problem for two-phase flow dynamics.  

This problem, along with its analytical solution, has 

been extensively employed in the nuclear scientific 
community for code validation, benchmarking, and 

numerical accuracy assessments. It provides an 

analytical representation of the gravitationally-
induced acceleration of a liquid column. As illustrated 

in Fig. 3, a vertical pipe of 12 meters in length is 

initially filled with a uniform column of water 

surrounded by annulus of air moving in downward 
direction at a constant speed of 10 m/s. Under the 

influence of gravitational forces, the liquid phase 

undergoes acceleration, consequently resulting in a 
contraction of the water jet over time in order to satisfy 
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the mass conservation equation. This transient state 
continues until the contact discontinuity (i.e. void 

wave) leaves the system, resulting in a steady-state 

condition. The initial states are given by 

      (αg, ug, ul, p) = (0.2, 0 m/s, 10 m/s, 105 P a)       (17) 

The inlet boundary condition is set to be the 

same as Eq. (17), except for the pressure, which is 
extrapolated from the interior node. On the contrary, 

for the outlet boundary condition, the pressure is 

imposed to be 105 Pa and the other variables are 
extrapolated from within the computational domain. 

When solving the problem implicitly, the tolerance ε in 

the Newton’s loop is set to be 10−4. Perturbation value 

εi = 10−6 for all primitive variables. 

 

 

Fig. 3. Water Faucet Problem 

 

        Fig. 3 shows the numerical results of the void 

fraction distribution compared to analytical results at 

0.2 s, 0.6 s, and 1.0s. The numerical results align 
closely with the analytical solution with a stable 

calculation.  

 
 

        IV. B. Manometer Oscillation Problem 

 

  The oscillatory manometer problem was initially 

introduced as a benchmark problem for two-phase 

flow analyses [12]. In this scenario, a U-shaped tube 
with a total length of 20 m is examined. Initially, the 

U-tube manometer contains both gas and water, with 

the water moving at a uniform velocity of 2.1 m/s. The 
U-shaped manometer is half-filled with water, as 

illustrated in Fig. 4.  

This test serves as a benchmark for the 
computational modeling of inertial and body force 

effects. It also serves to test the ability of numerical 

schemes to simulate the oscillations of the liquid-gas 

interface. 

 
 

 

Fig. 4. Manometer oscillation problem 

      Fig. 4 shows numerical results of the liquid levels 

in the left leg of the U-shaped manometer. The liquid 

level was determined by calculating the total liquid 

volume in the left part of the tube. The results shown 

in the figure closely match the analytical solution, with 

excellent agreement in tracking the oscillation 

magnitudes of the water level. 
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          IV. C. Phase separation problem 

 

        The sedimentation problem proposed by Coquel 
[13], serves as a test to examine phase separation 

influenced by gravitational forces. This test involves a 

vertical pipe initially filled with a two-phase mixture 

with a uniform void fraction of 𝛼𝑔= 0.5. Under 

gravitational influence, the two phases separate, 
resulting in the denser liquid phase settling at the pipe's 

base and the lighter phase rising to its top. This test 

assumes no mass transfer. Fig. 5 provides a schematic 

representation of the sedimentation problem. There are 
two numerical challenges in the simulation of the 

sedimentation test, 1) a dynamically developed phase 

disappearance phenomenon due to phase separation; 
and 2) a sharp interface existing between the separated 

two phases. 
 

 

Fig. 5. Phase separation problem 

      Fig. 5 shows the transient distribution of void 

fraction throughout the pipe. Two distinct void fronts 

are observed, moving in opposite directions - one 
upward and one downward eventually converging near 

the pipe's center after 2 sec. The numerical results align 
closely with the analytical solution. 

 

VII. Conclusion 
 
       In conclusion, the complex field of nuclear reactor 

design and analysis presents many challenges that 

require advanced numerical tools to accurately capture 
thermal hydraulic phenomena during both steady state 

and transient phases. The foundation has been laid in 

this research for a thorough system analysis code 
essential for nuclear reactor thermal hydraulic design, 

with the primary focus on an implicitly solved 

isentropic two-fluid model. The computational 

approach adopted, integrating the Advection Upstream 
Splitting Method (AUSM) with a staggered grid, 

demonstrated significant promise. By using Newton’s 

method for the implicit solution of the governing 
equations and computing a numerical Jacobian matrix 

for the derivatives, both of solution stability and 

efficiency were achieved. This study introduced three 
test problems to validate the proposed numerical tool: 

the water faucet problem, the oscillating manometer 

problem, and the phase separation problem. The 

benchmark validation results highlight the code's 
stability and precision in its predictions. Therefore, the 

successful implementation of the two-fluid isentropic 

model establishes a solid foundation for the future 
development of a comprehensive nuclear system 

analysis code based on the fully implicit two-fluid 

model. 

References 
 

1) RELAP5/MOD3.3 Code Manual Volume I, 

December 2001. NUREG/CR-5535 ed., 
U.S.Nuclear Regulatory Commission. 

2) TRAC-M/FORTRAN 90 (Version 3.0) Theory 

Manual, April 2001. NUREG/CR-6724 ed., U.S. 
Nuclear Regulatory Commission. 

3) Chung, B. D., Kim, K. D., Bae, S. W., Jeong, J. J., 

Lee, S. W., Hwang, M. K., & Yoon, C. (2010). 

MARS code manual volume I: code structure, 
system models, and solution methods (No. 

KAERI/TR--2812/2004). Korea Atomic Energy 

Research Institute. 
4) Ha, S. J., Park, C. E., Kim, K. D., & Ban, C. H. 

(2011). Development of the SPACE code for 

nuclear power plants. Nuclear Engineering and 
Technology, 43(1), 45-62. 



 

7 

 

Proceedings of SCOPE 
13-15 Nov. 2023 – KFUPM 

Paper 23131 

 

5) Hibiki, T., Ishii, M., 2006. Thermo-fluid dynamics 
of two-phase flow. Springer.  

6) H. Paill`ere, C. Corre, and J. Garcıa Cascales, “On 

the extension of the AUSM+ schemeto 

compressible two-fluid models,” Computers & 
Fluids, vol. 32, no. 6, pp. 891–916, 2003. 

7) Qiulan Zeng (2017). Numerical Schemes for 1-D 

Two-Phase Flows. UWSpace. 
8) Hayward, A. (2002). Compressibility equations 

for liquids: A comparative study. British Journal of 

Applied Physics. 18. 965. 10.1088/0508-
3443/18/7/312. 

9) Prosperetti, A., Tryggvason, G., 2009. Computational 

methods for multiphase flow. Cambridge university 

press. 
10) Onur O, Eyi S. Effects of the Jacobian evaluation 

on Newton’s solution of the Euler equations. 

International Journal for Numerical Methods in 

Fluids 2005; 49(2):211–231. 

11) Ransom, V.H., 1987. Numerical benchmarck test 
no 2.1: Faucet flow. Multiphase Science and 

Technology3, 465–467. 

12) Hewitt, G. F., Delhaye, J. M., Zuber, N. 1987. 
Multiphase Science and Technology 

13) Coquel F, El Amine K, Godlewski E, Perthame B, 

Rascle P. A numerical method using upwind schemes 

for the resolution of two-phase flows. Journal of 

Computational Physics 1997; 136(2):272–288. 
 


