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Abstract – The core reloading pattern optimization in Pressurized Water Reactors (PWRs) 

is a crucial task aimed at enhancing reactor performance while ensuring safety and 

minimizing fuel consumption. In the present study, the application of Multi-Objective Elitist 

Teaching-Learning-Based Optimization (MO-ETLBO) technique is proposed to efficiently 

and effectively address the multi-objective loading pattern optimization problem for 

Chashma Nuclear Power Generating Station (CNPGS) unit-3. A multivariable objective 

function is designed to evaluate the quality of each loading pattern while maximizing 

critical boron concentration (CBC), minimizing power peaking factor (PPF) to optimally 

enhance the cycle length while ensuring adequate safety margins and design limits. It has 

been found that the equilibrium cycle can be further extended to 16.07 EFPDs 

while keeping the PPF and CBC within the design limits. To validate the effectiveness of 

TLBO, the optimized loading pattern of the equilibrium core is then evaluated using 

DONJON5 computer code for the analysis of neutronic parameters. The results determined 

that proposed algorithm is a promising approach for loading pattern optimization in 

CNPGS unit-3 offering potential improvements in reactor cycle length while ensuring 

safety, and overall performance.  
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I. Introduction 

 

One of the most developed nuclear reactor types 

worldwide is the pressurized water reactor (PWR). 

They have been utilized to generate power in many 

countries in a range of types and sizes. PWRs are often 

utilized to produce power because they have a number 

of advantages [1]. These advantages include the ability 

to consistently and reliably produce vast amounts of 

power, their superior thermal efficiency when 

compared to fossil fuels, and their relatively low 

environmental impact. Due to its several layers of 

safety precautions, PWRs also have a solid safety track 

record. These precautions include redundant shutdown 

systems, emergency cooling systems, and multiple 

obstacles to prevent the discharge of radioactive 

elements [2-4]. 

Finding the most efficient fuel-reloading pattern 

for PWR is of constant scientific interest since it will 

increase economy and guarantee safety. The optimal 

fuel-reloading pattern cannot be guaranteed by manual 

loading pattern searching, which consumes a lot of 

time. As a result, numerous optimization strategies 

have been investigated and implemented to improve 

the fuel-reloading pattern [5-8]. The main issue, 

besides optimization methods, is determining the 

essential parameters for a variety of fuel reloading 

patterns. It seems sense that the best fuel-reloading 

pattern would be found quickly if the core parameters 

could be accurately analyzed in a relatively short 

period of time. The machine-learning approach has 

been gaining popularity due to technique 

advancements and its noticeable benefit in quickly 

resolving non-linear issues. The rapid-evaluation 

model has been developed using an artificial neural 

network (ANN), and 90% of evaluation errors for 

power-peak factor were within 6%, with an evaluation 

time of 0.084 seconds [9]. By enhancing the ANN, 

Lysenko [10] was able to evaluate the keff with 

evaluation errors of 1.3% or less and a cost of roughly 

100 ls for a single fuel-loading pattern. Jiang [11] used 

ANN to assess the reactor's CONSORT's keff. To 

increase prediction accuracy, Jang [12] changed the 

convolutional neural network (CNN) algorithm's 

internal structure. With this modification, the 98.3% 

evaluation errors for the power-peak factor and the 

99.0% evaluation errors for the cycle length were both 

within 0.5%. Many deep-learning structures, such as 

VGGNet [13], GooLeNet [14], and ResNet [15], have 

been constructed in CNN in recent years. The rapid 

evaluation model was developed following neural 

network training and sent to the GA module in 

DAKOTA [16] for fuel reloading pattern optimization. 

The above technique has been used to optimize the 

fuel-loading pattern for the Chinese CNP1000 PWR. 

The tabu search [17-18], modified genetic 

algorithms [19-21], artificial bee colony algorithm 

[22], fractional order particle swarm optimization [23-

25], simulated annealing [26], ant colony optimization 

[27], various architectures of artificial neural networks 

[28-29], and many other artificial intelligence 

techniques have already been used to solve these 

problems. The size of the population, the number of 

generations, and other common control parameters are 

often required for all evolutionary and population-

based optimization algorithms. Every optimization 

method has its own algorithm-specific parameters in 

addition to these common control parameters. For 

instance, the parameters of the GA include the 

selection operator, non-dominated sorting, and the 

probabilities of mutation, cross-over, and selection. 

Crossover probability, distribution index, and mutation 

probability have been used in Genetic Algorithm-II 

(NSGA-II). Harmony search algorithm (HS) requires 

the harmony memory consideration rate, the number 

of improvisations, and the pitch changing rate. Particle 

swarm optimization (PSO) requires learning rates for 

individual ability and society influence. The wrong 

choice of these method-specific parameters causes the 

algorithm to converge to local optimum instead of the 

global optimum, which increases computational time. 

The optimal loading pattern has been determined using 

a harmony search method that was influenced by the 

Catfish Effect. Two harmony memories (HM) of equal 

size has been employed in the algorithm to cover the 

entire range of variables. The new harmony was 

created from each history memory or from the entire 

set of potential solutions, according to specific 

probability rules [30-31].  For the pressurized water 

reactor (PWR) core's loading pattern optimization 

(LPO), a new adaptive genetic algorithm (AGA) has 

been presented in order to reduce the maximum radial 

power peaking factor (RPPF) at Xe's equilibrium while 

meeting cycle duration constraints [32]. For the 

purpose of flattening the power inside the reactor core 

of Bushehr nuclear power station (WWER-1000 type), 

the application and performance comparison of PSO 

and GA optimization methods for nuclear fuel loading 

pattern problem has been addressed [33]. The multi-

swarm moth flame optimization approach with 
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predator has been suggested as a new methodology 

[34]. The trees social relations (TSR) optimization 

technique has been presented to improve the 

multiplication factor, power flattening, and fitness of 

the final solution when optimizing the fuel assembly 

loading pattern of PWRs [35].  In order to determine 

the ideal PWR loading pattern based on BEAVRS, the 

Polar Bear Optimization Algorithm has been used 

[36]. To discover the best loading pattern with the 

highest keff and highest thermal fluxes while limiting 

the power peaking factor, a combination of the 

intelligent technique GA and the Monte Carlo (MC) 

algorithm SuperMC has been presented [37]. The 

teachinglearningbased optimization (TLBO) 

algorithm and the diffusion theory code PRIDE have 

been combined to create a software design package 

that optimizes the in-core fuel loading pattern of the 

Pakistan Research Reactor-1 (PARR-1) by 

maximizing the effective multiplication factor (keff) 

[38]. 

Using the optimization approach MO-ETLBO 

suggested in the present study, it has been determined 

from the prior literature that the core of CNPGS unit-3 

has never been optimized with the proposed algorithm. 

With the goal of maximizing the critical boron 

concentration (CBC), minimizing the power peaking 

factor (PPF), to enhance the cycle length while 

maintaining adequate safety margins and design limits, 

an MO-ETLBO technique is applied to the constrained 

non-linear optimization problem of the CNPGS unit-3 

core reloading pattern. The obtained results are found 

to be in good agreement as compared to the existing 

reloading pattern before applying the optimization 

technique in terms of cycle length enhancement, and 

are further discussed in detail in the subsequent 

sections.  

II. Materials and Methods 

II.A. Description of CNPGS Unit-3 Core 

For this analysis, a nuclear power plant with a 

reactor core made up of 121 Fuel Assemblies (FAs) 

and a 998.6MWth power rating is taken into 

consideration. Every assembly is made up of a 15×15 

rod array with 204 fuel rods, 20 guide tubes, and one 

instrumentation thimble. In cold-pressed Zr-4 tubes, 

fuel rods with marginally enriched uranium dioxide 

pellets are stacked. The fresh core's fuel assemblies are 

initially loaded with three distinct enrichments, 2.4 

w/o, 2.67 w/o, and 3.0 w/o, respectively. The outer 

most portions of the core include the fuel assemblies 

with the highest levels of enrichment [39]. The loading 

pattern of the CNPGS unit-3 quarter core is presented 

in Fig. 1 and the basic information on essential 

technical parameters is given in Table I. 
 

 

Fig. 1. Loading pattern of the quarter core with 

different enrichment fuel assemblies (EFA) [39]. 

Table I Basic information of core technical data [39]. 

Material 
Density 

(g/cc) 

Volume 

(cc) 

Mass 

(Kg) 

UO2 10.181 3995384 40677 

Zircaloy 6.55 1463969 9589 

GH–4169A (Inconel) 8.24 57403 473 

Steel 7.95 174941 1391 

Water 0.998 8250500 8234 

II.A. TLBO with Elitism 

The TLBO algorithm just needs common 

controlling factors, such as the number of generations 

and population size, to function. It does not need any 

algorithm-specific parameters. TLBO is a population-

based algorithm that was motivated by the classroom's 

teaching and learning process. In this approach, a class 

of students serves as the population, while the various 

subjects being taught serve as the design parameters of 

the issue to be optimized, and each student's 

performance serves as a measure of the system's 

fitness. The characteristics that the objective function 

depends on are represented by the design variables, 

and the optimal outcome is the best value of the 

objective function. The two phases of TLBO are 

referred to as the "Teacher's Phase" and the "Learner's 

Phase," respectively. In the teacher's phase, the teacher 

is seen as the class's most knowledgeable individual, 

reflecting the algorithm's best answer and imparting 

information to the students. There is no doubt that a 

class with a good teacher will produce better work. 

During the learner's phase, pupils interact with each 

other and learn from each other. Random interactions 

between students occur in the classroom through 

conversations, group projects, presentations, and 

formal or informal contact. A student can pick up fresh 
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information from other students who have greater 

experience. This method of classroom learning is 

followed by the TLBO algorithm when it seeks the best 

answer [40-41].  

Rao and Savsani developed a concept of elitism in 

TLBO, which altered the fundamental TLBO by 

introducing the concept of elitism and employing the 

regulating parameter of elite size. In ETLBO, the elite 

solutions that were already preserved at the start of the 

iteration replace the worst solutions in each iteration. 

The final part of the learner's phase involves replacing 

the worst solutions with the best ones [42].  

II.B. CNPGS Unit-3 Core Reloading Pattern 

Generation using MO-ETLBO 
The power peaking factor and the critical boron 

concentration are two parameters that are important to 

the multi-objective function in the current research 

work. These parameters are assessed by using the full 

core simulation code DONJON5, a modular 

deterministic computer code created by Canada's 

École Polytechnique de Montréal for use in 3-

dimensional core calculations. A modular 

deterministic neutronics lattice code named 

DRAGON5, which can solve the Bateman equations 

for the neutron transport equation with 

depletion/burnup in both two and three dimensions, 

was utilized to generate group constants for assembly 

[43–44]. The complete flow of the MO-ETLBO 

algorithm with mathematical expressions used to 

modify other learners based on the best learner during 

the teacher phase and learner phase is shown in Fig. 2.  

The MO-ETLBO algorithm's teaching factor is a 

key aspect in determining whether the algorithm 

converges slowly or quickly. Either 1 or 2 apply. 

However, other studies have indicated that choosing 

teaching factor 1 or 2 at random throughout each cycle 

will result in superior outcomes [41] to make sure the 

method converges successfully. In the present study, 

the adaptive teaching factor is used to ensure the faster 

convergence. The MO-ETLBO algorithm's 

convergence is measured using the following three 

termination criteria. 

i) For the entire class, the relative error in the 

objective function value between two successive 

iterations is less than 0.1%. 

ii) Every learner/student in the class has worked 

toward the same outcome, which means that each 

student's fitness value moved towards the same 

value. 

iii) The algorithm will end after the maximum number 

of iterations if all of the aforementioned 

requirements are not satisfied. The algorithm has a 

maximum iteration limit of 500. 

 

Fig. 2. Flow chart of MO-ETLBO algorithm coupled with 

DONJON5 for core reloading pattern optimization of 

CNPGS unit-3 extended cycle. 

III. Results and Discussion 

 

In this section, the multi-objective optimization 

problem is modeled by integrating normalized 

weighting factor in the objective function depending 

upon two parameters: the power peaking factor and the 

critical boron concentration. The multi-objective 

mathematical function for fitness evaluation is given 

by; 
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where, PPF  is core power peaking factor and 

maxPPF is the upper bound of PPF but not exceeding 

the design limit of 1.6, while CBC is the critical boron 

concentration measured in ppm and maxCBC is lower 

bound of CBC but not exceeding the design limit of 

1800ppm. The constant 𝛼 is the normalized weighting 

factor for both the objective function terms. Its value 

can be taken between 0 and 1, however in current 

analysis the results for 𝛼 = 0.6 are presented, to obtain 

optimized values of PPF and CBC. Initial class of 100 

students along with the adaptive selection of teaching 

factor was used for optimization procedure and elite 

size of 5 was considered. The number of iterations 

were set to 500. The algorithm converged in 177 

iterations giving the optimal core 

with minimum PPF and maximum CBC with the 

enhancement of cycle length.  Table II shows the 

comparisons of PPF and CBC of the extended core at 

zero burnup before and after applying the optimization 

algorithm. It can be observed that while keeping the 

PPF and CBC within the design limits for the 

optimized core, the equilibrium cycle can be further 

extended to 16.07 extended full power days (EFPDs).  

Table II Comparisons of PPF and CBC before and 

after applying MO-ETLBO at zero burnup. 

Parameters 

Before 

applying MO-

ETLBO 

algorithm 

After 

applying 

MO-ETLBO 

algorithm 

Difference  

Power 

peaking factor 

(PPF) 

1.4685 1.4649 -0.004 

Critical boron 

concentration 

(CBC)  

1580 1685 105 

Extended 

cycle length 

(EFPDs) 

468.69 484.76 16.07 

 

The core loading pattern of equilibrium cycle is 

refueled with 40 fresh fuel assemblies of 4.1% 

enrichment in which 24 fuel assemblies contained 

different number of gadolinium pins (4 and 8 pins). 

The loading patterns of equilibrium cycle with 

gadolinium absorber before and after applying 

optimization algorithm are shown in Fig. 3(A) and Fig. 

3(B) respectively. The critical boron concentration for 

the extended equilibrium cycle of CNPGS unit-3 is 

calculated. Fig. 4 depicts the behavior of the critical 

boron concentration in the reactor Hot Full Power 

(HFP) condition as a function of core average burnup 

for the extended cycle of CNPGS, unit-3 core designs 

before and after applying the MO-ETLBO algorithm. 

The core power maps in Fig. 5 and Fig. 6 show how 

the reactor's radial power distribution for equilibrium 

cycle behaves in relation to optimized core-average 

burnup for BOL and EOL respectively. These power 

maps display mesh plots of the typical power in each 

PWR core assembly at various stages of core life. The 

axial power distributions of equilibrium cycle of 

extended core at BOL and EOL with absorber are 

calculated. The results for cores with and without 

applying optimization algorithm are shown in Fig. 

7(A) and Fig. 7(B) respectively. As a result, total 

power peaking initially declines in a manner similar to 

how F∆H declines at the start of the cycle.  

Fig. 8 depicts the moderator temperature 

coefficient (MTC) for the extended equilibrium cycle 

core as it was determined under HFP conditions both 

before and after optimization. The figure makes it 

evident that the MTC for the extended equilibrium 

cycle core at HFP is negative throughout the whole 

cycle, both before and after optimization. The total 

peaking factor is a key variable in evaluations of 

reactor safety and fuel management. It has an impact 

on the thermal margins, fuel rod integrity, and certain 

aspects of reactor operation, such as core power 

distribution. When determining the overall peaking 

factor, both axial and radial power distribution are 

taken into account. The total peaking factor (FQ) 

behavior for the core with and without optimization 

during the period of core life is shown in Fig. 9. The 

difference between the integral of the linear power 

along the fuel rod with the highest integrated power 

and the average integrated fuel rod power is known as 

the maximal enthalpy rise hot channel factor (F∆H). 

The total maximum power produced in a fuel rod as a 

result is measured as F∆H. The F∆H limit identifies the 

coolant flow channel with the largest enthalpy rise. 

The maximum enthalpy rise with the change in 

average core burnup without and with absorber, 

respectively, is shown in Fig. 10. For the figure, it can 

be seen that the extended cycle of CNPGS unit-3 core's 

F∆H value is within the design limit of 1.6 (Excluding 

uncertainties). 
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Fig. 3. Loading pattern of extended equilibrium cycle 

quarter core (A) before optimization, and (B) after 

optimization. 

 

Fig. 4. Comparison of the letdown curve of equilibrium 

cycle core before and after applying MO-ETLBO. 

 
Fig. 5. Radial power distribution of equilibrium cycle      

of optimized core at BOL. 

 
Fig. 6. Radial power distribution of equilibrium cycle      

of optimized core at EOL. 

 
Fig. 7. Axial power distribution of equilibrium cycle core 

before and after applying MO-ETLBO. 

 
Fig. 8. MTC of equilibrium cycle core before and after 

applying MO-ETLBO. 

 
Fig. 9. Total peaking factor of equilibrium cycle             

core before and after applying MO-ETLBO. 
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Fig. 10. Maximum enthalpy rise of equilibrium cycle        

core before and after applying MO-ETLBO. 

 

IV. Conclusions 

 
For the purpose of optimizing the fuel loading pattern 

for CNPGS unit-3 extended core, a multi-objective elitist 

teachinglearningbased optimization technique has been 

provided in this research study. For the purpose of 

evaluating multi-variable objective function depending 

upon the PPF and CBC, this method has been incorporated 

with the DONJON5 full core simulation computer code. An 

adaptive selection of teaching factor between 0 and 1 was 

made to get the fast convergence of the algorithm. The MO-

ETLBO was applied to find the optimal core while 

minimizing the core PPF and maximizing the CBC. The 

results show that MO-ETLBO can perform better to search 

the optimized loading pattern. By using MO-ETLBO, the 

equilibrium cycle has been shown to be extendable to 16.07 

EFPDs while keeping the PPF and CBC within the design 

limits. The extensive neutronic analysis was performed to 

observe the behavior of CBC, axial power distribution, 

MTC, total peaking factor and maximum enthalpy rise as a 

function of burnup for the extended equilibrium cycle core 

with and without optimization, and radial power distribution 

at BOL and EOL of optimized core. It was observed that the 

results are in good agreement. For future research, various 

multi-objective quantum-based meta-heuristic optimization 

techniques can be used to find the optimal loading pattern 

with faster convergence while keeping the neutronic 

parameters within the design limits.  Furthermore, the 

artificial neural networks combined with hybrid 

optimization techniques can be applied to accurately find the 

optimal load pattern of PWR’s. 
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