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Abstract – The Reynolds-Averaged Navier-Stokes (RANS) equations are widely used in 

computational fluid dynamics (CFD) simulations for predicting turbulent flows. The 

turbulent stresses in RANS equations are computed using additional turbulence models 

such as the k −  model. From implementation point of view, k −   model requires values 

of involved parameters that are usually approximated using calibrated relations. In recent 

years, machine learning has shown great potential in improving the accuracy and 

efficiency of turbulent models by enabling the development of data-driven closures for 

turbulence models. In this article, we use machine learning to compute k −  simulation 

parameters instead of using empirical relations. Our results show that machine learning 

accurately computes the solution which is very close to actual DNS data. In comparison to 

conventional turbulence models, machine learning exhibits low numerical error. 
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I. Introduction 

The Navier-Stokes equations are widely 

acknowledged as one of the most intricate sets of 

equations in mathematical physics, given their 

nonlinear and multi-dimensional nature. The 

mathematical and computational complexities 

associated with Navier-Stokes equations inspired 

many theoretical modifications, one of which is the 

Reynolds-averaged Navier-Stokes (RANS) equations. 

By separating the steady-state solution from the time-

varying fluctuations in the system through Reynolds 

decomposition, the RANS equations incorporate the 

effects of turbulence in various flow regimes. This 

approach enables the RANS equations to account for 

the average behavior of the fluid flow and its turbulent 

fluctuations, providing a powerful tool for predicting 

the behavior of turbulent flows in practical 

applications. The RANS equations use a solution that 

is split into a time-independent mean flow velocity and 

time-varying fluctuations about the mean: 

( , ) ( ) ( , )x t x x t= +u u u  

Utilizing the time averaging operation and above 

decomposition, one gets the following nonlinear 

equations: 
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 (1) 

known as Reynolds-averaged Navier-Stokes (RANS) 

equations for incompressible flows. The last term on 

right hand side of Eq. (1) is known as Reynolds stress. 

In RANS, the turbulent fluctuations are averaged over 

time, leading to the appearance of additional terms in 

the equations that cannot be solved directly. These 

terms require the specification of a turbulence model 

or closure model to describe the turbulent stresses and 

fluxes. These models require calibration against 

experimental or numerical data, and their accuracy 

may vary depending on the flow conditions and 

geometry. As a result, the choice of turbulence model 

and its parameters can have a significant impact on the 

accuracy of the RANS simulation results. The closure 

problem remains an active area of research in 

computational fluid dynamics, with ongoing efforts to 

develop more accurate and reliable turbulence models. 

Boussinesq [1] proposed a relation among the 

turbulence stresses and the mean flow to close the 

system of equations by introducing a new 
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proportionality constant t  , the turbulence eddy 

viscosity. This model is known as eddy viscosity 

models given as: 

                      
2

3
i j ij t iju u k S   = −  (2) 

where the mean strain rate tensor is given by: 
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where 

                                

2

t
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
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k  is the turbulent kinetic energy,   is the dissipation 

and 
ij is the Kronecker delta. 

The k  -epsilon ( k −  ) model is one of the most 

common turbulence models with two equations. In 

collaboration with the RANS equations, the k −  

model determines the turbulence kinetic energy k and 

its dissipation rate   . In the k −   model, the 

turbulence is assumed to be isotropic, homogeneous, 

and stationary, and the transport equations for k and   

are closed by assuming a linear relationship between 

the turbulent viscosity and the turbulent kinetic energy. 

The model includes additional empirical constants and 

coefficients that are determined by means of 

experimental or numerical data.  

In the k −   model, the reference velocity of 

turbulence is represented by 
1/2k  determined from the 

turbulent kinetic energy k  , and the characteristic 

length scale is given by 
3/2 /eL k =  which is the 

typical length scale of energy-containing eddies. Using 

the concept of eddy viscosity, the governing equations 

of the k −  model for wall turbulence may be written 

as: 

    t i
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 . The values of constants (

1 2, , , kC C     ), function ( 1 2,f f  ) and turbulent 

viscosity ( t ) in the above model are well debated in 

the literature and are determined through calibration 

against experimental or numerical data.   

Jones and Launder [2, 3] extend the original k −  

model to the low Reynolds number form which allows 

calculations right to the wall but included extra terms 

in the transport equations to improve predictions in the 

wall region, or for computational expediency. The 

formations proposed by of Launder and Sharma [4], 

also known as the standard k −  model, is one of the 

commonly used turbulent model. This formulation is a 

modification of the k-epsilon model that aims to 

improve its performance in simulating wall-bounded 

turbulent flows. It includes additional transport 

equations for the dissipation rate of the turbulent 

kinetic energy and the dissipation rate of the specific 

dissipation rate, which is a measure of the dissipation 

rate normalized by the turbulent kinetic energy. The 

model also includes additional empirical constants and 

coefficients that are determined through calibration 

against experimental or numerical data. The Launder 

and Sharma formulation is particularly effective in 

simulating wall-bounded turbulent flows, such as 

turbulent boundary layers and fully developed pipe 

flows. It is known to provide more accurate predictions 

of the flow characteristics near the wall, where the 

turbulence is strongly influenced by the presence of the 

wall. However, it is also computationally more 

expensive than the standard k −   model, as it 

requires the solution of additional transport equations. 

Chein [5] studied presented a general finite difference 

formulation of the incompressible Navier-Stokes 

equations in terms of the vorticity and the stream 

function for turbulent internal flows. Turbulent models 

such as algebraic eddy viscosity models, and the low 

Reynolds number two-equation k-epsilon models were 

systematically studied. Lam and Bremhorst [6] 

described the development of a new form of the high 

Reynolds number k −   model which in contrast to 

previous forms of the high Reynolds number k −  

model, does not required the use of wall function 

formulas and the introduction of additional terms into 

the transport equations. In 1987, Nagano and Hishida 

[7] proposed an enhanced version of the k-epsilon 

model, which demonstrated exceptional accuracy in 



                            
            Proceedings of SCOPE 

                                                                    13-15 Nov. 2023 – KFUPM 

Paper 23217 

   

predicting various types of turbulent shear flows near 

walls, including pipe flows, flat-plate boundary layers, 

diffuser flows, and relaminarizing flows. Although the 

k-epsilon model has shown to be effective in 

predicting ordinary turbulent flows, including those 

with heat transfer, as demonstrated by Nagano and 

Kim [8], it does not fully account for the wall-limiting 

behavior of velocity fluctuations as identified by 

Chapman and Kuhn [9]. As a result, when near-wall 

turbulence needs to be accurately predicted in 

numerical analyses, such as in the heat transfer 

analysis of high Prandtl number fluids, errors may 

arise in the predictions, as pointed out by Myong et al. 

[10].  In 1990, Nagano and Tagawa [11] presents an 

enhanced version of [8] that considers the limiting 

behavior of turbulence as well as the impact of an 

adverse pressure gradient on shear layers. To see the 

literature related to variations and improvements in 

k −  model read the articles [12]-[17] and references 

given therein. Calibrated functions and constants of 

some of the important models are given in Table 1. 

In summary, the RANS equations possessing reduced 

computational cost [18] has a closure problem 

originating from the introduction of new Reynolds 

stress terms when averaging the Navier-Stokes 

equations. In response, many turbulence models have 

been developed using a physics-driven modeling 

process over the years (in addition to previously 

discussed literature see also [19]-[20]). This process 

involves forming hypotheses based on physical 

intuition, constructing differential or algebraic 

mathematical models, parameterizing the models, and 

calibrating the coefficients. These physics-driven 

models have the advantage of capturing the primary 

turbulence transport characteristics and are useful for 

a broad range of engineering applications. However, 

the turbulence model remains a significant source of 

uncertainty in RANS simulations, as noted by many 

researchers ([21]-[22]), due to the divergence of real 

engineering applications from the ideal conditions 

used to construct these models. 

 

II. RANS and Machine Learning 

In the field of engineering, simulating fluid flow is an 

essential task for understanding and optimizing many 

systems, ranging from aircraft design to energy 

production. While high-fidelity simulations such as 

DNS (Direct Numerical Simulation) and LES (Large 

Eddy Simulation) can accurately capture the complex 

and chaotic nature of turbulent flows, their 

computational cost can be prohibitive for many 

practical applications. As a result, RANS (Reynolds-

Averaged Navier-Stokes) simulations, which are 

computationally less expensive, are often preferred. 

However, it is important to note that the latest physics 

knowledge and data obtained through high-fidelity 

simulations provide a solid foundation for advanced 

turbulent model development. With an increasing 

amount of high-fidelity simulation data from DNS and 

LES, we can obtain detailed information about both 

averages and turbulent flow fields close to real 

physical conditions. This rich and precise database of 

flow phenomena can be leveraged to develop more 

accurate and reliable RANS turbulent models. By 

incorporating this data, RANS simulations can achieve 

a level of accuracy and realism that was previously 

unattainable. This can lead to significant 

improvements in engineering design and optimization, 

as well as a deeper understanding of the underlying 

physics of turbulent flows. Moreover, as 

computational resources continue to advance, it is 

likely that high-fidelity simulations will become more 

accessible, further improving the accuracy and 

applicability of RANS models.  

Traditional numerical techniques, such as finite 

difference and finite element methods, have long been 

employed to solve differential equations. However, in 

recent years, the application of machine learning (ML) 

for solution approximation has gained significant 

attraction [23-24]. Neural networks, particularly deep 

architectures, possess the capability to approximate 

any continuous function, given adequate depth and 

breadth. This universal approximation property makes 

them a compelling choice for representing intricate 

solutions of differential equations without the 

constraints of predefined meshes or grids. By recasting 

the PDE as an optimization challenge, where the loss 

function embodies the deviation from the differential 

equation, neural networks can be trained to identify an 

approximate solution that closely adheres to the PDE 

and its boundary conditions [25]. Such a data-driven 

methodology facilitates adaptive resolution, 

concentrating computational resources where the 

solution displays rapid variations or complex features 

[26]. As the intersection of deep learning and PDEs 

continues to evolve, neural network-based approaches 

are set to redefine our capabilities in understanding and 

solving intricate PDE systems. 

Machine learning (ML) techniques have been 

proposed as a potential solution to the RANS closure 

problem, as they could learn complex relationships 

between input and output data. ML can play a 
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significant role in the solution of RANS equations in 

several ways, such as: 

1. Training data generation: One of the primary 

challenges in solving RANS equations is the 

generation of high-quality training data. ML 

and AI techniques can be used to generate 

training data for RANS simulations, allowing 

for more efficient and accurate solutions. 

According to the study conducted by Zhang et 

al. [27], the use of generative adversarial 

networks (GANs) can aid in the efficient and 

accurate generation of RANS training data.  

2. Surrogate modelling: ML and AI can be used 

to develop surrogate models that approximate 

the solution of RANS equations. These 

models can be used to simulate complex fluid 

flows with high accuracy and reduced 

computational cost. The study by Xiao et al. 

[28] demonstrated the efficacy of using deep 

neural networks to develop surrogate models 

for RANS simulations. 

3. Optimization: ML and AI can be used to 

optimize the parameters of the RANS 

simulation. This can help to improve the 

accuracy and efficiency of the simulation and 

reduce computational cost. The study 

conducted by Bhushan et al. [29] showed that 

the use of genetic algorithms can help 

optimize the parameters of the RANS 

simulation, leading to improved accuracy and 

reduced computational cost. 

4. Uncertainty quantification: ML and AI 

techniques can be used to quantify the 

uncertainty in the RANS solution. This can 

help to identify the sources of error and 

improve the accuracy of the simulation as 

demonstrated in the study by Ray et al. [30]. 

Considering the preceding discussion, it becomes 

evident that an extensive body of literature exists 

concerning the calibration of functions and constants 

employed in various RANS models. Furthermore, 

considering the remarkable capacity of machine 

learning to approximate solutions to differential 

equations, in this article, we propose to enhance the 

efficacy of RANS models by using neural network in 

place of calibrated functions. Keeping to its promise, 

machine learning indeed provides results that are very 

close to DNS data and in many situations, perform 

better than conventional turbulence models. 
 

III. The Architecture of Neural Network 

To estimate the RANS simulation parameters, we train 

an artificial neural network for a fixed value of 

Reynolds using DNS data to train the network. This 

deep feedforward network comprises a series of fully 

connected layers, punctuated by activation functions 

and dropout layers to enhance its generalization 

capabilities. The considered neural network employs 

50 neurons within the hidden layers. Notably, the 

hyperbolic tangent (Tanh) activation function is 

employed within the hidden layers. The Tanh function, 

which maps its input to a range between -1 and 1, 

introduces a smooth gradient, making it a suitable 

choice for the solution approximation tasks of 

differential equation [23]. Such a characteristic can be 

instrumental in mitigating challenges related to 

vanishing or exploding gradients, which are often 

encountered in deep network training. The architecture 

concludes with a LeakyReLU activation function, 

providing a safeguard against inactive neurons and 

ensuring gradient flow during the training phase. 

Strategically positioned dropout layers further 

augment the network by introducing a regularization 

mechanism, which combats overfitting by randomly 

nullifying a fraction of input units during the training 

process. We have used a dropout rate of 20%. The 

architecture and internal working are shown in Figure 

1. 

 

III. Results and Discussion 

The problem of fully developed plane turbulent 

channel flow of a viscous fluid is considered in this 

article. The data from direct numerical simulations of 

the problem 

(URL:http://torroja.dmt.upm.es/channels/data/) is 

used to train the artificial neural network, as described 

above, for approximating the simulation parameter, 𝑓𝜇, 

which is usually computed using some pre-defined 

analytical relation. The numerical results of the k −  

model for the problem is calculated using the 

calibrated functions and constants given in Nagano 

Tagawa model [11] and Chien model [5]. 

To approximate 𝑓𝜇 , it is important to note that the term 

most directly influenced by 𝑓𝜇 is 𝜈𝑡. Consequently, we 

opted to employ the mean squared error between the 

http://torroja.dmt.upm.es/channels/data/
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RK approximation and the DNS solution as our error 

function. Specifically, we utilized the following error 

function: 

𝑀𝑆𝐸𝜈𝑡
=

1

𝑛
∑(𝜈𝑡𝑖

− 𝜈𝐷𝑁𝑆𝑖
)

2
  

It's noteworthy that the chosen neural network 

architecture attained the desired accuracy right in its 

initial iteration. We have therefore not presented any 

graphical results showing error decay and convergence 

of the network training. However, a detailed 

comparison of the results obtained through machine 

learning with those obtained using Nagano Tagawa 

model [11] and the Chien model [5] is presented in 

Figures 2-5.  

In Figure 2(a), we show results in terms of computed 

velocities using DNS (solid black curve), machine 

learning results (red dashed lines with filled triangles) 

and simulation results corresponding to Chien model 

[5] (dashed blue line with filled squares). It is noted 

that the results at the end points i.e., around y=0 and 

y=1 are similar for DNS, machine learning and Chien 

model, however, in the interior region, where 

velocities increase sharply, machine learning results 

are in better agreement with the DNS whereas error in 

Chien model is relatively large. Similar results are 

shown in Figure 2(b) where we compare DNS results 

with machine learning results and Nagano Tagawa 

model [11] (blue line with squares). It is seen that 

Tagawa model tend to overestimate velocities, 

whereas machine learning results lie very close to the 

DNS results, exhibiting a negligible error. Hence, it is 

shown that the velocities computed using machine 

learning are more accurate compared to the results 

obtained using Chien model [5] and Nagano Tagawa 

model [11]. 

In Figure 3, we discuss results in terms of turbulence 

kinetic energy k. In the presented results, solid black 

curve represents the DNS data whereas results in 

dashed red (with triangles) are due to machine 

learning. Also plotted in Figure 3(a) are the results 

computed using the Chien model, shown in dashed 

blue line with squares. It is seen that the values of k 

computed using machine learning are much closer to 

the DNS data whereas the results of Chien model show 

considerably large error in the computed values. 

Figure 3(b) shows simulation results, given in dashed 

blue line with squares, corresponding to Nagano 

Tagawa model. Even in this case, the machine learning 

results are better as these lie close to DNS data. Even 

though the results obtained using the Chien model and 

Nagano Tagawa model, both tend to show the same 

qualitative patterns as DNS, however, the quantitative 

difference between the computed values of k is very 

large. In contrast, machine learning results are in 

excellent agreement with the DNS data both in 

qualitative and quantitative sense.  

We compare the simulation results, in terms of 

dissipation rate of turbulence kinetic energy    in 

Figure 3. Following the same color notation, solid 

black curve represents DNS data whereas dashed red 

(with filled triangles) and dashed blue (with filled 

squares) shows results due to machine learning and 

Chien model, respectively. In Figure 3(b), the results 

in blue dashed with solid squares represent Nagano 

Tagawa model. In this case, the results from machine 

learning, Chien model and Nagano Tagawa model, all 

exhibit similar performance. The numerical error 

between computed results and DNS is small except in 

the early phase (around y=0) where a sharp increase is 

seen which all the models fail to capture accurately.  

In Figure 5, we compare results in terms of turbulent 

viscosity, t , computed using DNS data (solid black 

curve), machine learning results (dashed red with 

triangles) and Chien model (dashed blue with squares). 

The results from Nagano Tagawa model are shown in 

Figure 5(b) using dashed blue line with squares. It is 

seen that none of the method seems to accurately 

capture the variation of t  with y. Nagano Tagawa 

model seem to be working relatively better but still 

exhibits large errors compared to actual DNS data. For 

our machine learning results, the underperformance of 

the network is due to the fact the numeric values of 

turbulent viscosity t  is very small i.e., 10-3. We are 

currently looking into this scaling issue of the data and 

hope that we will find a work around to encounter this. 

Nonetheless, the results in terms of u, k and ε have 

shown great performance of machine learning 

compared to conventional Chien model and Nagano 

Tagawa model.  

A tabulated comparison of the DNS data, machine 

learning results, Chien model and Nagano Tagawa 

mode is presented in Table 2. In the table, we show 

numerical error between the DNS data and the 

simulation results of machine learning and considered 

models. The L2-norm error, for computed velocities u, 

k, ε and turbulent viscosity t  is given. The numerical 

error for velocity u, k and ε is smallest for machine 

learning results. However, machine learning results in 

terms of turbulent viscosity t , shows large error for 
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machine learning results which is due to the data 

scaling issue as discussed in the preceding paragraph. 
 

Table 1: Calibrated functions and constants of some of the 

important k-ε models 
Model Functions Constants 
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Table 2: Error of the results of velocity, turbulent kinetic 

energy (k), dissipation rate obtained from neural network, 

Chien mode and Nagano Tagawa model   with the DNS  

(solid black curve). 
Models 

2DNSu u−  
2DNSk k−

 2DNS −
 2T T DNS −

 
ML 0.0189 0.0287 0.4211 1.7554 

Chien 

model 

[5] 

 

0.1823 

 

0.1347 

 

1.4914 

 

0.0035 

Nagano 

Tagawa 

model 

[11] 

 

0.0642 

 

0.0571 

 

0.9718 

 

0.0005 

 

 
  

Fig. 1. Structure of the neural network used to replace 

the calibrated value of fµ. 

 

 
Fig. 2. Comparison of the results of velocity profile obtained 

from neural network (red dashed curve with filled triangles), 

Chien model and Nagano Tagawa model (dashed blue line 

with filled squares in (a) and (b) respectively) with the DNS  

(solid black curve). 
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Fig. 3. Comparison of the results of turbulent kinetic energy 

(k) obtained from neural network (red dashed curve with 

filled triangles), Chien model and Nagano Tagawa model 

(dashed blue line with filled squares in (a) and (b) 

respectively) with the DNS (solid black curve). 

 
Fig. 4. Comparison of the results of dissipation rate of 

kinetic energy (ε) obtained from neural network (red dashed 

curve with filled triangles), Chien model and Nagano 

Tagawa model (dashed blue line with filled squares in (a) 

and (b) respectively) with the DNS (solid black curve). 

 
Fig. 5. Comparison of the results of turbulent viscosity (υt) 

obtained from neural network (red dashed curve with filled 

triangles), Chien model and Nagano Tagawa model (dashed 

blue line with filled squares in (a) and (b) respectively) with 

the DNS (solid black curve). 

 

IV. Conclusions 

The key objective of this paper was to introduce an 

alternative approach to k −   simulations 

incorporating machine learning to approximate 

simulation parameters such as f   (and others) in 

comparison to conventional approaches where these 

are computed as calibrated functions.  

For this purpose, we develop a neural network to 

approximate the values of f  and iteratively improve 

it by minimizing the loss function which compares the 

DNS results and k −  results. The results show that 

the machine learning approach tends to show much 

better performance compared to conventional 

turbulence models. We compare results in terms of 

flow velocities u, k, ε and turbulent viscosity t . The 

machine learning results show excellent agreement 

with the DNS data. For the case of u, k, and ε, machine 

learning results tend to be better than the conventional 

turbulence models. However, for the turbulent 

viscosity t , the errors in the machine learning results 

and DNS data is relatively large which we believe is 

because the numeric values of   are very small. It 

should be noted that for t  , the performance of 

turbulence models is also poor.  

It is also worth mentioning that the great 

performance of the neural network can be attributed to 

the availability of high precision DNS data. Also, the 

training is limited to a fixed value of the Reynold 

number. The future work will be aimed at training 

neural networks that can work with varying values of 

Reynolds number.  
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