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Abstract – The discrete-ordinates-method (DOM) is one of the primary numerical techniques for the solution of 

the Boltzmann Transport Equation (BTE) as well as other transport equations that have been derived from the BTE. 

These transport equations are used for the study of various phenomenon such as the radiation heat transfer in a 

participating media, heat conduction via phonon transport at the micro/nanometre scales, neutron transport theory, 

etc. DOM has traditionally been used in rectangular coordinates, however, relatively recently, the DOM technique 

has been fully extended to be applicable in structured, general, orthogonal as well as non-orthogonal coordinate 

systems. Orthogonal and non-orthogonal coordinate systems can be successfully used to cover complex, irregular 

geometrical domains with a structured mesh and hence an efficient solution procedure based on the DOM can be 

developed. 
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I. Introduction 

 

The discrete-ordinates-method (DOM) is one 

of the primary numerical methods for the solution of 

the Boltzmann Transport Equation (BTE) as well as 

for various other equations that have been derived 

from the BTE. Some of these equations are: the 

radiative transfer equation (RTE), which is used to 

model the phenomenon of radiation heat transfer 

through a participating medium (absorbing, emitting, 

scattering); the equation of phonon radiative transfer 

(EPRT) is used to describe sub-continuum heat 

conduction phenomenon that manifests itself at 

micro/nanometer scales; in neutron transport theory, 

the determination of the neutron distribution requires 

the solution of a BTE type equation. In this paper, the 

DOM is discussed in the context of the radiative 

transfer equation (RTE). It is believed that similar 

analysis applies to other BTE type equations. 

 

The RTE is an integro-differential equation with one 

dependent variable, the radiation intensity I  and 

seven independent variables; three space variables, 

( , , )x y z  in Cartesian coordinates or ( , , )    in 

general curvilinear coordinates, two direction 

variables, the polar and the azimuthal angles ( , )  , 

the frequency (energy) variable   and finally the 

time variable t . For the exposition of the DOM 

method in this paper, it is quite adequate to work with 

an abridged version of the RTE, which is obtained by 

assuming a steady-state, frequency independent, two-

dimensional problem. This implies that, 

 

( , , , )I I x z  =  

 

It is important to note that no problem is two-

dimensional in reality and therefore the 

approximation to two-dimensionality has to be 

performed carefully. Here, the 2D approximation 

means that the radiation intensity gradient I y   is 

negligible or zero. However, the thermal radiations 

still travel in a 3D space and therefore, the direction 

of propagation is described by two angles instead of 

one. The coordinate independent form of the radiative 

transfer equation is then written as, 

 

2

0 0

ˆ sin
4

s
o a bI I I I d d

 


    


 = − + +  Ω  (1) 

 

where, ˆ ˆ ˆ ˆcos sin cos sin sin    = + +Ω i j k
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In the above equation, 
o  is the extinction 

coefficient, 
a  is the absorption coefficient, 

s  is the 

scattering coefficient and   is the scattering phase 

function. Here we assume isotropic scattering and 

therefore 1 = . Moreover, we will take 

o a sk = +  and will also assume that radiative 

equilibrium prevails, which entails, 
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In the preceding equation, 
bI  is the black-body 

radiation intensity and is given as, 
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where,   is the Stefan-Boltzmann constant and 

( , ) (or ( , ) in general)T x y T    is the absolute 

temperature of the participating medium. Here we 

will remark that the analysis in this paper focusses on 

the left-hand-side of equation (1) and none of the 

many previous, simplifying assumptions have a 

fundamental effect on this analysis. On the contrary, 

these assumptions help us to focus on the analysis at 

hand. 

 

The RTE in the Cartesian coordinates can then be 

written as, 

 

cos sin sin ( )o b

I I
I I

x z
   

 
+ = −

 
  (5) 

 

To solve equation (5), the DOM can be used, a basic 

outline of which is now given. The 2D region is first 

discretized by covering it with a mesh with spacing 

x  and z . The 4  solid angle is also discretized 

by choosing a set number of directions. This entails 
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equally dividing the range of the polar and azimuthal 

angles   and   in to a number of values. The angular 

spacings are   and  . The derivatives are 

approximated by their finite-difference counterparts 

and the integration is performed by means of either 

the Simpsons rule if   and   have constant 

values or by other quadrature algorithms with non-

uniform   and  . The resulting system of 

linear, simultaneous equations can then be solved to 

determine the radiation intensity I . There is more 

detail in the numerical solution procedure but the 

previous discussion will suffice for our purposes. 

 

II. Complex, Irregular Geometries 

 

Real life problems often involve regions that 

cannot be identified by standard shapes such as the 

rectangle, circle, ellipse, etc. and hence such regions 

are termed as irregular. Within the scope of the DOM, 

the solution of these problems can be approached in 

two ways. We may either use a structured mesh 

(finite-difference method) or an unstructured mesh 

(finite-volume method with say triangular cells). 

Algorithms based on structured meshes are more 

efficient than those based on unstructured meshed and 

this is especially true in the case of the finite-volume 

method. This is because, in the finite-volume method, 

a full database has to be constructed that keeps track 

of the various relations between the nodes, edges and 

cells. Moreover, connectivity information has also to 

be obtained from this database. If an iterative 

procedure is being used for the solution of the 

simultaneous equations, then this database is used 

repeatedly. None of this overhead occurs when a 

structured mesh is used, and this is because relations 

between the nodes, edges and cells as well as the 

connectivity information is built into the mesh. 

However, until relatively recently, the only structured 

meshes that were available for the solution of the RTE 

were those associated with the Cartesian, Cylindrical 

and Spherical coordinate systems. So, for example, 

the RTE can be solved approximately by means of the 

DOM in a complex, irregular region by covering that 

region with a Cartesian mesh, the curved boundaries 

being approximated by a “staircase”. The RTE is then 

discretized in the usual manner resulting in a system 

of simultaneous linear equations which can then be 

solved. As is apparent, this is not a satisfactory 

approach to the solution of such problems. 

 

When it is said that a structured mesh, such as the 

Cartesian/Cylindrical/Spherical, is available for the 

solution of RTE, this implies that the specific form of 

the RTE, that is applicable in these coordinate 

systems is known. The RTE in any coordinate system 

is of course written in terms of the space coordinates 

in those systems. So, for example, the RTE in the 

cylindrical coordinate system is given as, 
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      (6) 

 

In equation (6) above, it is observed that derivatives 

of the intensity variable I  with respect to the polar 

and azimuthal angles also now appear on the left-

hand-side. And this is true in general for all 

curvilinear coordinate systems. The origin of these 

derivatives lies in the fact that the basis vectors in a 

general curvilinear coordinate system change from 

one point to another, unlike in the Cartesian system, 

in which they are the same. The polar and azimuthal 

angles are measured from a fixed direction and these 

usually correspond to directions associated to any two 

of the basis vectors. It is required that the range of the 

polar angle is always 0     and that of the 

azimuthal angle to be 0 2   , hence when the 

basis vectors change as we move from one point to 

another neighboring point, the same numerical value 

of the polar and azimuthal angles do not correspond 

to the same direction in space. And this is the source 

of the derivatives of the radiation intensity with 

respect to the polar and azimuthal angles. 

 

Let us suppose that an orthogonal/non-orthogonal 

coordinate system is available and its transformation 

equations from the Cartesian coordinates are known 

as given below, 

 

( , , ) ( , , ) ( , , )x x y y z z        = = =  (7) 
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then, it is not so unwieldy to derive expressions for 

, ,I x I y I z       in terms of the derivatives 

, ,I I I        . These can then be 

substituted in to the left-hand-side of the RTE. What 

is missing are terms involving the derivatives 

,I I     . To write these derivatives, it is first 

required to determine the expressions for the 

following derivatives, 

 

, , and , ,
     

     

     

     
 (8) 

 

Until relatively recently, the expressions for these 

derivatives were undetermined and hence the RTE in 

a general curvilinear coordinate system could not be 

written. This scenario changed with the publication of 

his paper [1] in 2011 by Freimanis, in which he 

derived the RTE in a general, curvilinear coordinate 

system. The explicit expressions for the derivatives of 

the polar and azimuthal angles were more clearly 

presented by Yilbas et al. in [2]. They presented the 

expressions for the above derivatives, both for the 

orthogonal as well as for the non-orthogonal 

coordinate systems. For the orthogonal coordinates, 

these expressions are [2], 
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The above expressions are based on selecting the -

direction as the polar axis (the polar angle is measured 

from the basis vector in the -direction). The 

azimuthal angle is measured from the basis vector in 

the -direction. 
1 2 3, ,h h h  are the scale factors 

(diagonal entries of the metric tensor) of the 

orthogonal coordinate system. The RTE in an 

orthogonal coordinate system can then be written as 

[2], 
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(10) 

 

Similar, but much more involved analysis can be 

carried out for the case of a non-orthogonal system. 

The details are presented in [2]. 

 

III. Numerical Examples 

 

Equation (10) and the related equation in a 

non-orthogonal coordinate system can be solved by 

any of the three methods: finite-difference method, 

finite volume method, finite element method. Out of 

these three, the finite-difference method is the most 

straightforward approach. The orthogonal/non-

orthogonal mesh can be generated by means of the 

methods of Numerical Grid Generation as described 

in [3]. In particular, Elliptic Grid Generation system 

can be used to obtain equations (7). Once equations 

(7) are available (in array form in computer memory), 

the metric tensor and the connection coefficients of 

the curvilinear coordinate system can be determined. 

In the next step, the coefficients of the various 
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derivatives in the relevant RTE are calculated. The 

RTE is then solved by means of the discrete-

ordinates-method. The details of the numerical 

solution procedure for the DOM for an orthogonal 

coordinate system are provided in [4, 5, 6, 7]. The 

details of the numerical solution procedure for a non-

orthogonal coordinate system are provided in [8, 9]. 

 

For the present paper, two illustrative problems are 

solved by means of the non-orthogonal meshes. The 

results obtained are compared with those published 

earlier [10]. It is observed that the two solutions are 

reasonably close. 

 

III.A. Absorbing, emitting and isotropically 

scattering medium in a quadrilateral enclosure 

 

The problem is concerned with a medium that 

absorbs, emits and isotropically scatters thermal 

radiation. The medium temperature is maintained at a 

constant temperature of gT  whereas the enclosure 

walls are considered black and are maintained at a 

constant temperature of 0 K . In this problem, the 

radiative equilibrium is not maintained and therefore 

equation (3) is not applicable. However, equation (4) 

is still applicable and equation (1), the RTE, is 

modified by replacing 
o  by 

a . The geometry and 

the non-orthogonal mesh are shown in figure 1. The 

dimensionless heat flux distribution along the 

dimensionless distance at the bottom wall for three 

different values of 
a  are presented in figure 2. 

 

III.B. Isotopically scattering medium in a 

quadrilateral enclosure under radiative 

equilibrium 

 

The problem is concerned with a 

participating medium that isotropically scatters 

thermal radiation and is under radiative equilibrium. 

The medium temperature is to be determined whereas 

the enclosure walls are maintained at a constant 

temperature of 0 K  except the bottom wall, which is 

maintained at 300 K . The extinction coefficient is 

11o m −= . In this problem equations (1), (3) and (4) 

are all applicable. The geometry and the non-

orthogonal mesh are the same as in figure 1. The 

dimensionless heat flux distribution along the 

dimensionless distance at the top wall is presented in 

figure 3. 

 

IV. Conclusions 

 

Boltzmann Transport Equation (BTE) is used 

to describe various sub-continuum transport 

processes. BTE, in realistic situations, is typically 

solved numerically and DOM is a commonly used 

method. DOM has recently been further developed so 

as to be applicable in structured, orthogonal/non-

orthogonal meshes. Complex, irregular regions can 

be discretized by such meshes through the Numerical 

Grid Generation procedures. Subsequently, DOM can 

be used to solve the BTE in such regions. Two 

numerical examples are finally presented. 

 

 
 

Fig. 1. Geometry and non-orthogonal mesh. 
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Fig. 2. Dimensionless radiative heat flux at 

the bottom wall. 

 

 

 
 

Fig. 3. Dimensionless radiative heat flux at 

the top wall. 
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