
                           
            Proceedings of SCOPE 

                                                                    13-15 Nov. 2023 – KFUPM 

Paper 23084 

1 

 

 

In-Core Power Mapping for an HPR1000 using an Indigenous Program for 

Depletion Calculation & Machine Learning 
 

 

Ibrahim Patel*, Rizwan Ahmed, Syed Nadeem Ahsan, Syed Uzair Ahmed, and Muhammad Usman Naseem 

Karachi Institute of Power Engineering (College of Pakistan Institute of Engineering & Applied Sciences) 

Karachi, Pakistan 
*Corresponding author email: ipatel.me@gmail.com 

 

Abstract – The application of Artificial Intelligence (AI) is widespread in several fields, 

including nuclear power engineering. A nuclear reactor can be safely and optimally 

operated when various safety metrics, such as the power peaking factor and the departure 

from nucleate boiling ratio, are reliably obtained from the core power distribution. The 

failure of in-core instrumentation poses a challenge to continued safe and reliable 

operation, and risks in forced shut down to ensure core integrity. This work sought to apply 

suitable Machine Learning techniques for In-Core Power Mapping of a Hualong One 

(HPR1000), based upon reactor core simulations of the first fuel cycle; using an 

indigenously developed program for depletion calculation, and available operational data. 

Beginning with the reactor core simulations and intuitive choice of parameters for power 

density prediction, different Regression techniques have been explored. For full power map 

reconstruction, using the power density values available at detector locations, Two-Layer 

Feed-Forward (TLFFNs) and Convolutional Autoencoder Networks (CANs) have been 

explored. Utilizing actual detector charge data, Long Short-Term Memory Networks 

(LSTMNs) have been trained for temporal prediction of charge for multiple detector 

failures. Using actual data for charge and relative power distribution, LSTMNs and 

TLFFNs, used in conjunction, have been found suitable for extending plant operation for 

a few hours for up to 50% of detector failures. Prediction of temperatures based on power 

prediction is also proposed and demonstrated to validate against measured temperatures 

for practical implementation. Graphical User Interfaces (GUIs), implementing the best of 

explored techniques, have also been developed for In-Core Power Mapping. 
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I. Introduction 

The research and applications of Artificial 
Intelligence (AI) are being pursued in several technical 
fields, including nuclear power engineering. The long-
term consideration for several aspects of the application 
of AI in the nuclear industry has been published by the 
International Atomic Energy Agency (IAEA) and the 
United States Nuclear Regulatory Commission 
(USNRC) with a welcoming attitude for solutions 
leveraging AI [1-2]. 

Continuous core operation condition monitoring, 
using power and temperature distributions, is essential 
to ensure that the reactor runs efficiently and safely. To 
monitor the changes in power distribution, neutron flux 
is measured at various core locations, using neutron 
detectors, such as Self-Powered Neutron Detectors 
(SPNDs). Similarly, the temperature distribution is 
measured using temperature sensors, such as 
thermocouples. 

Thermal limits, such as the minimum departure from 
nucleate boiling ratio (DNBR), linear power density, 
and anomalies, such as hot spots, dropped and 
misaligned rods, fuel misloading and xenon oscillations 
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may be detected from the reconstructed in-core power 
distribution in online Core Monitoring Systems (CMS) 
[3-4]. 

The application of Artificial Intelligence (AI) for 
power distribution and safety metrics determination, has 
been done by several authors [3,5-6]. This project has 
been undertaken to indigenize core power mapping 
using an indigenous program for depletion calculation 
(PFDC), coupled with machine learning (ML) 
techniques for the two units of Hualong One (HPR1000) 
commissioned in Pakistan [7]. 

The failure of SPNDs causes a loss of information 
about the neutron flux, and consequently, the power 
distribution in the core, which puts reactor operation at 
risk. Partial failure can cause erroneous readings and 
false perceptions of the actual core condition that may 
lead to incorrect decisions [8]. A method is needed to 
reliably determine the core power distribution for the 
safe, smooth, and efficient operation of any Nuclear 
Power Plant (NPP), despite instrumentation failure. 
Otherwise, the plant has to be shut down, as per 
regulatory requirements, when more than 25% of in-
core detectors fail, failing to meet a Limiting Condition 
for Operation (LCO) [9]. 

II. Background 

II.A. Machine Learning  

Machine Learning (ML) is distinct from 
programming, wherein a computer develops models 
based on data. ML encompasses two major techniques: 
supervised learning, where models are trained on known 
predictor(s) and target data, and unsupervised learning, 
which discovers patterns in input data. Supervised 
learning includes classification (to predict discrete 
responses) and regression (to predict continuous 
variables) [10]. 

Deep Learning is a subset of ML that is inspired by 
the human brain's complex neural network. 
Feedforward networks consist of multiple layers. The 
first layer acts as the network's input, with each 
succeeding layer linked to the preceding one. The output 
of the network is produced by the last layer. A 
feedforward network with a single hidden layer and 
enough neurons has the potential to solve any finite 
input-output mapping problem [11-12]. 

Convolutional Autoencoder Networks (CANs) are 
employed for image denoising, using an encoding and 
decoding stage. 

A Long Short-Term Memory Network (LSTMN) is 
used for data sequence prediction. There are two 

methods of forecasting using LSTMNs: open-loop and 
closed-loop.  

Open-loop forecasting predicts future time steps in a 
sequence using real-time data input. Whereas closed-
loop forecasting predicts using the LSTMN’s former 
prediction as input. Closed-loop forecasting can be used 
to predict when real-time data is not available to the 
network before making the next prediction [12]. 

II.B. Machine Learning Performance Metrics 

Many metrics can be used to assess ML performance. 
The most basic is the residual, 𝑟𝑖, which is the difference 
between the true value, 𝑦𝑖 , and the model’s predicted 
value,  𝑦̂𝑖 . Where 𝑖  denotes the sample index from 𝑛 
samples, that is 𝑖 = 1,2, … 𝑛 . All other metrics are 
summary statistics for the residual. 

Relative to the true value of the response, 𝑟𝑖 yields 
the relative error, whose average over all samples can be 
reported as a percentage, called the Mean Absolute 
Percentage Error (MAPE). 

Mean Square Error (MSE) is the average sum of 
squared residuals. MSE is sensitive to large errors and 
outliers. The Root Mean Square Error (RMSE) is the 
square root of the MSE, that has the same unit as the 
response variable. 

The performance of Convolution Networks can be 
assessed using image quality metrics, comparing the 
output image relative to its true or ideal image. The 
structural similarity (SSIM) index combines various 
image properties into a single local quality score. It is 
like quantifying human visual perception [12]. 

II.C. Machine Learning for Core Monitoring 

Systems 

Continuous monitoring of reactor parameters is 
essential during plant operation to ensure safe and 
efficient performance. Core Monitoring Systems (CMS) 
process raw data from in-core instrumentation to 
generate key outputs including; assembly and pin-wise 
power distribution, thermal-hydraulic characteristics 
(such as DNBR), and indicators for detection of 
deviation from normal operation [13]. 

Recent research has explored supplementing CMS 
with operational data-driven models using ML. Li et al. 
investigated the reconstruction of the core power 
distribution for a Pressurized Water Reactor (PWR) 
using combinations of in-core, ex-core, and 
thermocouple detectors [3]. They found that Multi-
Layer Perceptron networks provided robust 
reconstruction compared to more sensor-sensitive 
Radial Basis Function networks. The authors suggested 
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that convolution neural networks (CNN) may further 
improve accuracy by incorporating spatial layout 
information. 

Saeed and Rashid combined an ANN model with the 
reactor physics code, INCOPW, to estimate Power 
Peaking Factors (PPFs) and safety metrics for a PWR 
[5]. Online validation during the 11th fuel cycle showed 
that their modified CMS could enable core monitoring 
for similar NPPs at the station. 

Pirouzmand and Dehdashti used ANNs to forecast 
power distributions and PPFs across 200 states of a 
VVER-1000 reactor [6]. Their model fits well with the 
validation data (with less than 3% error). They found the 
radial power distribution most sensitive to control rod 
positions and ex-core neutron detector signals. 

III. Core Simulation and Machine Learning 

Hualong One has been simulated using an 
indigenous program for depletion calculation (PFDC) to 
generate datasets for predicting and reconstructing the 
core power density distribution using ML. Available 
plant operational data has been used for core power 
mapping with temporal predictions during multiple 
SPND failures. A simple calculation scheme to estimate 
the core exit temperature, based on predicted power, is 
also proposed as a validation scheme for the temporal 
predictions. Fig. 1 illustrates the overall flow of data for 
this work. 

 

 

Fig. 1. Work Scheme for Core Power Mapping. 

III.A. Hualong One 

The Hualong One (HPR1000) is a Generation III+ 

NPP (PWR type), created by the China National 

Nuclear Corporation (CNNC), incorporating several 

active and passive safety features. The HPR1000 is 

designed to generate 1090 MWe from 3050 MWt, with 

three coolant loops. The core is composed of 177 fuel 

assemblies that use SPNDs to measure neutron flux and 

reconstruct full core power distribution. 7 SPNDs are 

axially distributed at 44 symmetric radial positions [14]. 

III.B. Program for Depletion Calculation, 

Simulation Data Generation, and Processing 

An indigenous algorithm for the combined use of 
WIMS and CITATION, named Program for Depletion 
Calculation (PFDC) has been used for simulating 
HPR1000 neutronics. After defining the geometry, 
material, and burnup calculation steps for the 
computational cells, WIMS calculates the assembly 
averaged nuclear cross-sections that CITATION uses 
for iteratively calculating 𝑘eff, power, and burnup for 
the given core geometry until 𝑘eff  is unity, 
corresponding to the reactor’s critical condition. Fig. 2 
illustrates the PFDC algorithm. 

 

 

Fig. 2. Algorithm for HPR1000 simulation. 

The model uses 1/8th core symmetry for burnup 

computations of 29 assemblies. There are 31 

computational regions to incorporate the effect of 

assemblies with ‘R’ control banks. 

Two arbitrary load schedules were devised to 

simulate the core for 336 Effective Full Power Days. 

The load schedules varied between 50 and 100 % full 

power with arbitrary duration, and appropriate 

calculation steps to obtain the inter-transitory trend of 

the calculated parameters. 

The data was compiled in a spreadsheet, having 

4,814 data points for: the operational time elapsed, 

axially averaged assembly-wise power density, fuel 

burnup, core power level, R-bank limit insertion (ℛ), 

and the effective multiplication factor ( 𝑘eff ). The 

assembly enrichment, number (1-29), and 𝓍 - 𝓎 

coordinates were included as identifiers/tags for each 

fuel assembly. 
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III.C. Regression 

For regression, power density was used as the target 
variable, with others as the predictor variables. 75% of 
the dataset was used for training with 10-fold cross-
validation, and 25% of the dataset was reserved as test 
data to check the accuracy of trained models. 

Based on Fine Tree Regression (because of the brief 
time it requires training), the predictor variables were 
reduced by assessing the sensitivity of the RMSE on the 
test data with different combination of predictors. 

III.D. Two-Layer Feed-Forward Network 

1) Simulation Data 
10 identical two-layer feed-forward neural networks 

(TLFFNs) were trained with simulation data from one of 
the two load schedules, with randomly initialized 
weights (w) and biases (b), for selecting the network 
with the lowest error score on a common test dataset.  

The input dataset consisted of 44 input values of 
power density (assemblies with SPNDs), and the output 
consisted of 133 values of power density (assemblies 
without SPNDs). The training dataset spanned 85 
simulated days. The input and output datasets were 
represented as arrays of numeric values, 44x85 and 
133x85, respectively. 

The TLFFN architecture consisted of a hidden layer, 
with 10 sigmoid hidden neurons, and the tan-sigmoid 
activation function. The output layer consisted of 133 
linear output neurons. Fig. 3 illustrates the architecture 
of the TLFFN. 

 

 

Fig. 3. Two-Layer Feed-Forward Network Architecture. 

2) Plant Operational Data 
The TLFFN architecture in Fig. 3 was used for 

training on available plant data. 100 TLFFNs were 
trained with 7 input values of accumulated charge (axial 
SPNDs’ readings for an assembly), and 28 output values 
of relative power corresponding to the assembly's axial 
power distribution. The input dataset had 44 radial 
positions as columns per instance of logged data, and a 
total of 180 instances were used. The output dataset was 
structured as a 28x7,920 array. 

To map the 44x28 power distribution to 133 radial 
locations without SPNDs, 100 TLFFNs were trained 

with 44 input values of relative power corresponding to 
assemblies with SPNDs and 133 output values of 
relative power corresponding to assemblies without 
SPNDs. The dataset consisted of 28 axial positions as 
columns per instance of logged data. The input and 
output sizes for the entire dataset were 44x7,920 and 
133x7,920, respectively. 

In all instances of TLFFNs’ training, 40% of the data 
was used as a test to evaluate their performance. 

III.E. Convolution Autoencoder Network 

A Convolutional Autoencoder Network (CAN) for 
denoising handwritten digit images [12], was adapted to 
predict full core power maps from colored indexed 
images of known power densities. The 14-layer CAN 
architecture is illustrated in Fig. 4. 

 

 

Fig. 4. Convolution Autoencoder Network Architecture. 

85 image pairs, corresponding to one of the load 
schedules, were used to form input and output image 
data stores with 95% of images for training, and 2.5% 
for validation and testing, each. 81 image pairs, 
corresponding to the other load schedule were used as a 
final test dataset. 

III.F. Long Short-Term Memory Networks 

Temporal history of charge accumulation data (180 
time-steps, at half-hour intervals) was used to train 154 
LSTMNs, being half of the total installed SPNDs (308), 
for sequential charge prediction. For each LSTMN, 90% 
of the time-series data was standardized and used for 
training, with 10% for testing. Earlier time steps were 
used as predictors for the next time step. The LSTMN 
architecture included a sequence input layer 
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w w
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(accumulated charge), an LSTM layer with 300 hidden 
units, a fully connected layer, and a regression (output) 
layer. Testing involved closed-loop forecast for failed 
detectors, and open-loop forecast for validation against 
working detectors. 

III.G. Core Exit Temperature Distribution 

Estimation 

 A simple thermal-hydraulic scheme has been 
adopted to estimate the core exit temperature. Where the 

total thermal power generation, 𝑄̇, of each assembly has 
been determined taking into account the losses in the 
thermal fission process (~2.6%) [9]. 
 From energy conservation considerations for heat 
transfer from the fuel to the coolant entering the core at 
a temperature, 𝑇in = 291.5℃ , with mass flux, 𝐺 =
3054 kg m−2 s−1 [9], and passing through an effective 
sub-channel cross-sectional area, 𝐴, the coolant’s exit 
temperature, 𝑇exit , for each assembly has been 
calculated using Eq. (1). 

𝑇exit = 𝑇in +
𝑄̇

289𝐺𝐴𝑐𝑝

(1) 

 The second term on the right side of Eq.(1) represents 
the temperature rise of coolant via heat transfer in 289 
(17 x 17 array of) sub-channels, under its’ mass flow rate 
(𝐺𝐴) and specific heat capacity (𝑐𝑝) at constant pressure, 

considered to be 6.1236 kJ kg−1 ℃−1; the average of all 
𝑐𝑝  at temperatures of 291.5, 311.5, 321.5, 326.5, and 

330.8℃, corresponding to an average core temperature 
rise of 39.3℃ [9]. 

IV. Results and Discussion 

IV.A. Regression 

 From practical considerations, 𝑘eff  was removed 
from the predictors due to its invariance (𝑘eff ≅ 1). The 
power level and R-bank limit insertion were co-related, 
hence ℛ  was removed. The assembly number and 
spatial coordinates were found to be redundant features, 
and the assembly number was removed, while the spatial 
coordinates were kept. Burnup, being a derived feature 
from power was removed, resulting in a significant 
reduction in the RMSE. Enrichment and day were 
incumbently kept because they are potentially 
significant for subsequent fuel cycles, having different 
core loading patterns, and account for temporal variation 
of the power distribution, respectively. 
 Table I summarizes the effect on RMSE from 
removing and adding different features on the Fine Tree 
Model, relative to the use of all 9 features (RMSE = 

1.5125). The change in RMSE further shows that the 
model is most sensitive to spatial coordinates and 
burnup. 

Table I. Effect on RMSE for Fine Tree Regression with 
different combination of Features 

S.# Features Feature(s) removed 

RMSE 

on Test 

Data 

𝚫RMSE 

(%) 

1 8 𝑘eff 1.4856 -1.78 

2 7 𝑘eff and Power level 1.4892 -1.54 

3 7 𝑘eff and ℛ 1.4991 -0.89 

4 6 
𝑘eff,  ℛ, and 

Assembly Number 
1.4171 -6.31 

5 5 𝑘eff,  ℛ, 𝓍 and 𝓎 2.2698 +50.1 

6 5 
𝑘eff, ℛ, Assembly 

Number, and Burnup 
1.2166 -19.6 

7 4 
𝑘eff,  ℛ, 𝓍, 𝓎 and 

Burnup 
1.6078 +6.30 

  
The selected features were used for training and 

testing other ML models. Overall, the Gaussian Process 
Regression (GPR) models have performed best in terms 
of accuracy, but with the lowest rate of prediction. The 
GPR models’ significantly low RMSE can be attributed 
to their best use case for predicting spatial data [10].  
 The ANNs performed better than most models as 
they are well suited for non-linear tasks. Most notably 
the Wide ANN, which also had the highest predictive 
speed among all tested models. ANNs have low 
interpretability, so the raison d’être for RMSE in ANNs 
cannot be determined with certainty [10]. 
 The Tree models predicted with modest error, taking 
a significantly brief time for training. Table II lists the 
performance metrics of representative models on the test 
dataset. 

Table II. Trained Regression Models’ Performance for 
Power Density Prediction 

S.# Model Type 
Test Prediction 

Rate (𝐬−𝟏) RMSE MAPE 

1 

Tree  

Fine 1.22 1.04  15,428  

Medium 2.82 2.76  44,922  

2 

ANN  

Wide 0.785 0.740 65,144 

Bi-layered 2.61 2.31  53,497  

Tri-layered 1.73 1.57  47,030  

3 

GPR  

Squared Exponential 0.289 0.201 9,586 

Matern 5/2 0.240 0.161 7,955 

Exponential 0.270 0.188 9,780 

 

The GUI, based on simulation data, is programmed 
to predict, and export the core power distribution for any 



                            
            Proceedings of SCOPE 

                                                                    13-15 Nov. 2023 – KFUPM 

Paper 23084 

 

6 

 

user-defined day and power from either one of; the GPR 
Matern 5/2 (Fig. 12), Wide Neural Network, or Fine 
Tree regression models. 

IV.B. Two-Layer Feed-Forward Network 

1) Simulation Dataset 
  
 The RMSEs of the TLFFNs for the 10% test dataset 
ranged from 0.0327-0.0535. The TLFFN having the 
lowest RMSE was tested on each instance of the larger 
test dataset. The maximum absolute error observed was 
0.4061%, corresponding to a MAPE for that instance to 
be 0.1203%. 

The GUI based on simulation data, is programmed to 
reconstruct the full core power map based on 44 known 
values of power density (Fig. 13). 

2) Plant Operational Data 
For the 100 TLFFNs trained to compute axial 

assembly power profile from charge data, the lowest 
MSE observed was 0.0077 (MAPE = 5.49%). Fig. 5 
shows the plots of MSE of the trained TLFFNs. 

 
Fig. 5. MSE of 100 Neural Networks trained for 7 

Charge to 28 Power Values Mapping. 

For 100 TLFFNs trained to compute 133 (non-
SPND) from 44 (SPND) power values, the lowest MSE 
observed was 0.00016 (MAPE = 11.00%). Fig. 6 shows 
the plots of MSE of the trained TLFFNs. 

 
Fig. 6. MSE of 100 Neural Networks trained for 44 to 

133 Power Values Mapping. 

The random nature of errors in all instances of 
TLFFNs’ training is due to the random nature of how 
weights and biases of each network are initialized during 
training [12]. 

IV.C. Convolution Autoencoder Network 

Evaluating the trained CAN for power map 
reconstruction on the test dataset, the SSIM was 
computed for each image. Fig. 7, shows the plot of the 
SSIM, for the test dataset.  

 
Fig. 7. SSIM from trained CAN on the second simulated 

load schedule. 

Most of the prediction qualities are similar. 

However, for samples 3-8 and 17-38, the performance 

either got too good, indicating overfitting, or degraded, 

indicating underfitting of the CAN, respectively. The 

phenomena of overfitting and underfitting could have 

occurred because of similar colored power maps 

existing in the training dataset. It could also indicate 

towards the low diversity of the training dataset. An 

instance of the input, corresponding true output, and 

predicted image (SSIM=0.9742) from the CAN are 

shown in Fig. 8. 

 

Fig. 8. Sample Input (Left), Actual (Centre), and 

Predicted (Right) image from the CAN. 

IV.D. Long Short-Term Memory Networks 

Assessing the trained LSTMNs for charge 
prediction, using open and closed loop configurations, 
the prediction and actual charge value plot, and the 
corresponding error and RMSE were obtained. Fig. 9 
and Fig. 10, show these for the 154th LSTMN tested for 
closed and open loop forecast, respectively. 
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Fig. 9. Closed Loop Forecast and RMSE on predictions 

for Test Data using the LSTMN for the 154th SPND. 

 
Fig. 10. Open Loop Forecast and RMSE on predictions 

for Test Data using the LSTMN for the 154th SPND. 

Overall, the open loop configuration performed 

better than the closed loop configuration. This is 

because the open loop configuration used actual values 

in prior time steps, in contrast to the closed loop whose 

predictor for each successive time step is the earlier 

prediction, which magnifies its’ inherent error. The 

maximum absolute error for both configurations was 

similar; 0.0016% occurring at time step 16 and 15, 

respectively. 

 The GUI (Fig. 11) developed based on operational 

data reconstructs core power distribution using 

TLFFNs. LSTMNs used in conjunction, to predict 

charge for failed SPNDs, allow power map prediction, 

which is validated using temperature estimation using 

the scheme in III.G. Errors in temperature for any 

assembly were seen to be within 1.5% during the 

simulation of successive failure of SPNDs, up to 180 

time-steps.  

V. Conclusion and Recommendations 

This study explored machine learning techniques for 
in-core power mapping of an HPR1000 using reactor 
simulations and available operational data. For the 
simulation dataset, using feature selection, the original 
parameters have been reduced to 5, for power density 
prediction. Based on these predictors, the Wide ANN’s 
performance was excellent in terms of accuracy and 
speed of prediction. 

TLFFNs performed well for core power map 
reconstruction. The combined use of TLFFNs and 
LSTMNs proved to be suitable for extending plant 
operation during multiple detector failures, for up to 
50% of all SPNDs’ failure. Temperature prediction 
based on power predictions enabled ascertaining the 
error during prediction. 

The current models trained with limited data, and the 
combined use of multiple networks, increases error. This 
can be overcome by diversifying data, specifically 
covering different known states of the core. Future work 
should also focus on hyperparameter optimization and 
investigating the performance of other ANN 
architectures. Additionally, feature engineering 
techniques can be explored to improve charge-to-power 
mapping, such as deriving instantaneous charge or 
current for each time step. 

Use of high-resolution images and finer convolution 
filters with the support of Graphical Processing Units 
could improve the CAN’s performance. 

Finally, a more detailed and rigorous Thermal-
Hydraulic Analysis, incorporating available correlations 
[15] and validating against actual temperature 
measurements for known states of the HPR1000 reactor, 
is necessary to further validate the proposed scheme for 
meeting the LCO reliably. 

By addressing these recommendations and 
considering subsequent fuel cycles, including the effect 
of assembly enrichment, the current approach can be 
further validated, refined, and fortified. 

 
Fig. 11. GUI Functionality Overview. 
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Appendix 

 
Fig. 12. Power Density Prediction using the GPR 

Matern 5/2 Regression Model. 

 
Fig. 13. Power Density Profile Reconstruction from 44 

locations (Left) to Full Core Map (Right). 
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