THE SECOND SAUDI INTERNATIONAL CONFERENCE ON NUCLEAR POWER ENGINEERING (SCOPE-2)

Contribution ID: 25110 Type: Extended Abstract

Irradiation Dose and Temperature Effects in Tungsten Carbide Fusion Reactor Shielding

Tuesday, 4 November 2025 10:35 (7 minutes)

Compact spherical fusion tokamaks require robust neutron shielding to protect superconducting cores from radiation-induced degradation within tight spatial constraints (~50 cm). Tungsten carbide (WC) is a prime candidate shielding material due to its excellent neutron and gamma attenuation properties, but its response to neutron irradiation is not fully understood. This study examined WC's irradiation-induced lattice swelling, defect evolution, and thermal transport degradation using tungsten ion irradiation (0.13–13 dpa; 100–400 °C). Grazing Incidence X-ray Diffraction showed significant initial lattice expansion (1.3% at 0.13 dpa, 100 °C), decreasing with higher temperatures and doses, ultimately transitioning to lattice contraction at high dose (13 dpa). Transmission Electron Microscopy and FIB-SEM revealed pronounced grain boundary cracking in coarse-grained WC and enhanced resistance in fine-grained WC due to refined microstructure. Preliminary Transient Grating Spectroscopy results demonstrated a dramatic reduction in thermal diffusivity (order-of-magnitude drop at lowest dose), highlighting substantial microstructural damage. This work informs WC shielding optimisation and future irradiation studies for advanced tokamak designs.

Technical Track

Fusion and Advanced Reactors

Primary author: Mr BAKKAR, Karim (Imperial College London)

Co-authors: Dr RIGBY-BELL, Max (UK Atomic Energy Authority); Dr WADE-ZHU, James (UK Atomic Energy Authority); Prof. WENMAN, Mark (Imperial College London); Dr HUMPHRY-BAKER, Samuel (Imperial College

Session Classification: Student Competition